On the non-measurability of \(\omega \)-categorical Hrushovski constructions

IF 0.3 4区 数学 Q1 Arts and Humanities
Paolo Marimon
{"title":"On the non-measurability of \\(\\omega \\)-categorical Hrushovski constructions","authors":"Paolo Marimon","doi":"10.1007/s00153-024-00943-4","DOIUrl":null,"url":null,"abstract":"<div><p>We study <span>\\(\\omega \\)</span>-categorical <i>MS</i>-measurable structures. Our main result is that a certain class of <span>\\(\\omega \\)</span>-categorical Hrushovski constructions, supersimple of finite <i>SU</i>-rank is not <i>MS</i>-measurable. These results complement the work of Evans on a conjecture of Macpherson and Elwes. In constrast to Evans’ work, our structures may satisfy independent <i>n</i>-amalgamation for all <i>n</i>. We also prove some general results in the context of <span>\\(\\omega \\)</span>-categorical <i>MS</i>-measurable structures. Firstly, in these structures, the dimension in the <i>MS</i>-dimension-measure can be chosen to be <i>SU</i>-rank. Secondly, non-forking independence implies a form of probabilistic independence in the measure. The latter follows from more general unpublished results of Hrushovski, but we provide a self-contained proof.</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":"64 3-4","pages":"351 - 386"},"PeriodicalIF":0.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00153-024-00943-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-024-00943-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

Abstract

We study \(\omega \)-categorical MS-measurable structures. Our main result is that a certain class of \(\omega \)-categorical Hrushovski constructions, supersimple of finite SU-rank is not MS-measurable. These results complement the work of Evans on a conjecture of Macpherson and Elwes. In constrast to Evans’ work, our structures may satisfy independent n-amalgamation for all n. We also prove some general results in the context of \(\omega \)-categorical MS-measurable structures. Firstly, in these structures, the dimension in the MS-dimension-measure can be chosen to be SU-rank. Secondly, non-forking independence implies a form of probabilistic independence in the measure. The latter follows from more general unpublished results of Hrushovski, but we provide a self-contained proof.

论\(\omega \) -范畴赫鲁晓夫斯基结构的不可测性
我们研究\(\omega \) -分类质谱可测量结构。我们的主要结果是:一类\(\omega \) -范畴赫鲁晓夫斯基结构,有限苏秩的超简单是不可质谱可测的。这些结果补充了Evans对Macpherson和Elwes猜想的研究。与Evans的工作相反,我们的结构可以满足所有n的独立n-合并。我们还证明了\(\omega \) -范畴ms -可测量结构的一些一般结果。首先,在这些结构中,可以选择ms维测度中的维度为su秩。其次,非分叉独立性意味着度量中的一种概率独立性。后者来自赫鲁晓夫斯基更一般的未发表的结果,但我们提供了一个独立的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archive for Mathematical Logic
Archive for Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.80
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信