Development of Microcapsules with Potential Nutraceutical Application from Ngoc Linh Ginseng (Panax vietnamensis Ha et Grushv.) Root Extracts by Spray-Drying and Freeze-Drying Techniques using Different Carriers

IF 2.8 4区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Thi-Van-Linh Nguyen, Thi Tuong Vi Tran, Thi-Thuy-Dung Nguyen, Quoc-Trung Huynh, Vinh-Lam Nguyen, Anh Duy Do, Trong Khoa Luong, Quoc-Duy Nguyen
{"title":"Development of Microcapsules with Potential Nutraceutical Application from Ngoc Linh Ginseng (Panax vietnamensis Ha et Grushv.) Root Extracts by Spray-Drying and Freeze-Drying Techniques using Different Carriers","authors":"Thi-Van-Linh Nguyen,&nbsp;Thi Tuong Vi Tran,&nbsp;Thi-Thuy-Dung Nguyen,&nbsp;Quoc-Trung Huynh,&nbsp;Vinh-Lam Nguyen,&nbsp;Anh Duy Do,&nbsp;Trong Khoa Luong,&nbsp;Quoc-Duy Nguyen","doi":"10.1007/s11483-025-09959-6","DOIUrl":null,"url":null,"abstract":"<div><p>Ngoc Linh ginseng (<i>Panax vietnamensis</i> Ha et Grushv.) belonging to the family Araliaceae is one of the most economically and medicinally valuable endemic herbs in Vietnam owing to their pharmacological potentials. The microencapsulation of ginseng root extracts in the present study was investigated to develop Ngoc Linh ginseng microcapsules as novel ingredients with potential pharmacological effects. Specifically, ginseng roots were subjected to solvent extraction and subsequent microencapsulation by mixing with various carriers including maltodextrin, gum Arabic and skimmed milk before spray- and freeze-drying. The results showed that compared to maltodextrin and its blend with skimmed milk, gum Arabic-maltodextrin mixture was the most effective in preserving phenolics, saponin compounds and antioxidant activities (FRAP and ABTS) with values of 1.73 mg gallic acid equivalent/g, 48.38 mg Quillaja saponin equivalent/g, 1428.62 Trolox equivalent/g, and 2.68 mg Trolox equivalent/g, respectively. In terms of ginsenoside profiles, Rg1 and Mr2 were the two predominant compounds in microencapsulated powder among others, namely Rb1, Re, and Rd. Scanning electron microscopy micrographs indicated the round shape and less rough surface of spray-dried microcapsules than freeze-dried samples while there were no differences in the composition of functional groups and crystalline structure as measured by Fourier-transform infrared spectroscopy and X-ray diffraction, respectively. In addition, low moisture content of 3.45–7.55% and high solubility of &gt; 93% of resulting powder facilitate the storage stability and its further application. In conclusion, high antioxidant content and activity along with diverse ginsenoside compounds and desired physical characteristics demonstrated the potential of microcapsules as pharmaceutical supplements, as illustrated by the anti-inflammatory effect on NO and IL-6 cytokines.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"20 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-025-09959-6","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ngoc Linh ginseng (Panax vietnamensis Ha et Grushv.) belonging to the family Araliaceae is one of the most economically and medicinally valuable endemic herbs in Vietnam owing to their pharmacological potentials. The microencapsulation of ginseng root extracts in the present study was investigated to develop Ngoc Linh ginseng microcapsules as novel ingredients with potential pharmacological effects. Specifically, ginseng roots were subjected to solvent extraction and subsequent microencapsulation by mixing with various carriers including maltodextrin, gum Arabic and skimmed milk before spray- and freeze-drying. The results showed that compared to maltodextrin and its blend with skimmed milk, gum Arabic-maltodextrin mixture was the most effective in preserving phenolics, saponin compounds and antioxidant activities (FRAP and ABTS) with values of 1.73 mg gallic acid equivalent/g, 48.38 mg Quillaja saponin equivalent/g, 1428.62 Trolox equivalent/g, and 2.68 mg Trolox equivalent/g, respectively. In terms of ginsenoside profiles, Rg1 and Mr2 were the two predominant compounds in microencapsulated powder among others, namely Rb1, Re, and Rd. Scanning electron microscopy micrographs indicated the round shape and less rough surface of spray-dried microcapsules than freeze-dried samples while there were no differences in the composition of functional groups and crystalline structure as measured by Fourier-transform infrared spectroscopy and X-ray diffraction, respectively. In addition, low moisture content of 3.45–7.55% and high solubility of > 93% of resulting powder facilitate the storage stability and its further application. In conclusion, high antioxidant content and activity along with diverse ginsenoside compounds and desired physical characteristics demonstrated the potential of microcapsules as pharmaceutical supplements, as illustrated by the anti-inflammatory effect on NO and IL-6 cytokines.

越南人参(Panax viet ensis Ha et Grushv.)微胶囊的研制用不同载体喷雾干燥和冷冻干燥技术研究根提取物
越南人参(Panax viet ensis Ha et Grushv.)属于五加科,是越南最具经济和药用价值的地方草药之一。通过对人参根提取物的微胶囊化研究,开发出具有潜在药理作用的新型人参微胶囊。具体地说,人参根经过溶剂萃取和随后的微胶囊化,混合各种载体,包括麦芽糊精,阿拉伯胶和脱脂牛奶,然后喷雾和冷冻干燥。结果表明,与麦芽糖糊精和麦芽糖糊精混合的脱脂乳相比,阿拉伯胶-麦芽糖糊精混合乳在保存酚类物质、皂苷类化合物和抗氧化活性(FRAP和ABTS)方面效果最好,分别为1.73 mg没食子酸当量/g、48.38 mg牛蒡皂苷当量/g、1428.62 mg Trolox当量/g和2.68 mg Trolox当量/g。在人参皂苷谱上,Rg1和Mr2是微胶囊粉末中最主要的化合物,其中Rb1、Re和Rd为Rg1、Mr2。扫描电镜图显示,喷雾干燥的微胶囊比冷冻干燥的样品形状更圆,表面更不粗糙,而傅里叶变换红外光谱和x射线衍射测量的官能团组成和晶体结构没有差异。此外,所得粉体的含水率3.45-7.55%,溶解度>; 93%,有利于其储存稳定性和进一步应用。综上所述,微胶囊具有丰富的抗氧化活性、多种人参皂苷化合物和理想的物理特性,表明微胶囊具有作为药物补充剂的潜力,对NO和IL-6细胞因子具有抗炎作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Biophysics
Food Biophysics 工程技术-食品科技
CiteScore
5.80
自引率
3.30%
发文量
58
审稿时长
1 months
期刊介绍: Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell. A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信