Bounded symbiosis and upwards reflection

IF 0.3 4区 数学 Q1 Arts and Humanities
Lorenzo Galeotti, Yurii Khomskii, Jouko Väänänen
{"title":"Bounded symbiosis and upwards reflection","authors":"Lorenzo Galeotti,&nbsp;Yurii Khomskii,&nbsp;Jouko Väänänen","doi":"10.1007/s00153-024-00955-0","DOIUrl":null,"url":null,"abstract":"<div><p>In Bagaria (J Symb Log 81(2), 584–604, 2016), Bagaria and Väänänen developed a framework for studying the large cardinal strength of <i>downwards</i> Löwenheim-Skolem theorems and related set theoretic reflection properties. The main tool was the notion of <i>symbiosis</i>, originally introduced by the third author in Väänänen (Applications of set theory to generalized quantifiers. PhD thesis, University of Manchester, 1967); Väänänen (in Logic Colloquium ’78 (Mons, 1978), volume 97 of Stud. Logic Foundations Math., pages 391–421. North-Holland, Amsterdam 1979) <i>Symbiosis</i> provides a way of relating model theoretic properties of strong logics to definability in set theory. In this paper we continue the systematic investigation of <i>symbiosis</i> and apply it to <i>upwards</i> Löwenheim-Skolem theorems and reflection principles. To achieve this, we need to adapt the notion of <i>symbiosis</i> to a new form, called <i>bounded symbiosis</i>. As one easy application, we obtain upper and lower bounds for the large cardinal strength of upwards Löwenheim–Skolem-type principles for second order logic.</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":"64 3-4","pages":"579 - 603"},"PeriodicalIF":0.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00153-024-00955-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-024-00955-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

Abstract

In Bagaria (J Symb Log 81(2), 584–604, 2016), Bagaria and Väänänen developed a framework for studying the large cardinal strength of downwards Löwenheim-Skolem theorems and related set theoretic reflection properties. The main tool was the notion of symbiosis, originally introduced by the third author in Väänänen (Applications of set theory to generalized quantifiers. PhD thesis, University of Manchester, 1967); Väänänen (in Logic Colloquium ’78 (Mons, 1978), volume 97 of Stud. Logic Foundations Math., pages 391–421. North-Holland, Amsterdam 1979) Symbiosis provides a way of relating model theoretic properties of strong logics to definability in set theory. In this paper we continue the systematic investigation of symbiosis and apply it to upwards Löwenheim-Skolem theorems and reflection principles. To achieve this, we need to adapt the notion of symbiosis to a new form, called bounded symbiosis. As one easy application, we obtain upper and lower bounds for the large cardinal strength of upwards Löwenheim–Skolem-type principles for second order logic.

有限共生和向上反射
在Bagaria (J Symb Log 81(2), 584 - 604,2016)中,Bagaria和Väänänen开发了一个框架,用于研究向下Löwenheim-Skolem定理的大基数强度和相关的集合论反射性质。主要的工具是共生的概念,最初是由第三位作者在Väänänen(集合论在广义量词中的应用)中引入的。博士论文,曼彻斯特大学,1967年);Väänänen(见《逻辑讨论会》1978年(蒙斯,1978年),《研究》第97卷。逻辑基础数学。, 391-421页。North-Holland, Amsterdam 1979)共生提供了一种将强逻辑的模型论性质与集合论中的可定义性联系起来的方法。本文继续系统地研究共生现象,并将其应用于向上Löwenheim-Skolem定理和反射原理。为了实现这一目标,我们需要将共生的概念调整为一种新的形式,称为有界共生。作为一个简单的应用,我们得到了二阶逻辑的向上Löwenheim-Skolem-type原理的大基数强度的上界和下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archive for Mathematical Logic
Archive for Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.80
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信