{"title":"IRHunter: Universal Detection of Instruction Reordering Vulnerabilities for Enhanced Concurrency in Distributed and Parallel Systems","authors":"GuoHua Xin;Guangquan Xu;Yao Zhang;Cheng Wen;Cen Zhang;Xiaofei Xie;Neal N. Xiong;Shaoying Liu;Pan Gao","doi":"10.1109/TPDS.2025.3556861","DOIUrl":null,"url":null,"abstract":"Instruction reordering is an essential optimization technique used in both compilers and multi-core processors to enhance parallelism and resource utilization. Although the original intent of this technique is to benefit the program, some improper reordering can significantly impact the program correctness, which we call instruction reordering vulnerability (IRV). However, existing methods detect IRV by defining CPU instruction reordering rules to schedule execution paths while neglecting compiler reordering, and thus generate false positives that require manual filtering and resulting in inefficiency. To bridge this gap, in this paper, we propose the IRV detection method, <italic>IRHunter</i>, which analyzes IRV characteristics and extracts vulnerability patterns, integrating program dependency analysis for compiler reordering and memory model constraints for CPU reordering. Specifically, we use static analysis based on specific patterns to narrow the analysis scope, and adopt log-based dynamic analysis to confirm vulnerability by checking the log constraints. We built the IRV benchmark to compare <italic>IRHunter</i> with five state-of-the-art tools (i.e., GENMC, Nidhugg, CBMC, SHB, BiRD). <italic>IRHunter</i> detected all 19 errors, doubling the best model checking tools’ performance, with half the false positive rate of leading data race detectors. It was 10× faster on small programs and outperformed data race detectors on large programs.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 6","pages":"1220-1236"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10947640/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Instruction reordering is an essential optimization technique used in both compilers and multi-core processors to enhance parallelism and resource utilization. Although the original intent of this technique is to benefit the program, some improper reordering can significantly impact the program correctness, which we call instruction reordering vulnerability (IRV). However, existing methods detect IRV by defining CPU instruction reordering rules to schedule execution paths while neglecting compiler reordering, and thus generate false positives that require manual filtering and resulting in inefficiency. To bridge this gap, in this paper, we propose the IRV detection method, IRHunter, which analyzes IRV characteristics and extracts vulnerability patterns, integrating program dependency analysis for compiler reordering and memory model constraints for CPU reordering. Specifically, we use static analysis based on specific patterns to narrow the analysis scope, and adopt log-based dynamic analysis to confirm vulnerability by checking the log constraints. We built the IRV benchmark to compare IRHunter with five state-of-the-art tools (i.e., GENMC, Nidhugg, CBMC, SHB, BiRD). IRHunter detected all 19 errors, doubling the best model checking tools’ performance, with half the false positive rate of leading data race detectors. It was 10× faster on small programs and outperformed data race detectors on large programs.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.