Source-Free Domain Adaptation for Remote Sensing Object Detection Using Low-Confidence Pseudolabels

Jin Kim;Junyoung Park;Hyunsung Jang;Namkoo Ha;Kwanghoon Sohn
{"title":"Source-Free Domain Adaptation for Remote Sensing Object Detection Using Low-Confidence Pseudolabels","authors":"Jin Kim;Junyoung Park;Hyunsung Jang;Namkoo Ha;Kwanghoon Sohn","doi":"10.1109/LGRS.2025.3557816","DOIUrl":null,"url":null,"abstract":"Source-free domain adaptive object detection (SFOD) enables detectors trained on a source domain to be deployed to unlabeled target domains without access to the source data, thus addressing concerns about data privacy and efficiency. Existing SFOD methods typically use a mean-teacher (MT) self-training paradigm with high-confidence pseudolabels (HPLs). However, HPLs often overlook small objects in novel domain conditions, leading to biased adaptation of the student detector. This issue is particularly problematic in remote sensing (RS) datasets dominated by small vehicles. To overcome this limitation, we introduce the low-confidence pseudolabel distillation for aerial (LPLDA) scenes framework, which leverages low-confidence proposals to improve the adaptation of small objects in the target domain. Moreover, we enhance the low-confidence pseudolabel (LPL) mining process with an instance consistency (IC) loss that reinforces teacher-student consistency, making small-object features more robust to domain shifts. Extensive experiments across four practical domain shift scenarios show that our method reduces false negatives for small objects and outperforms previous SFOD approaches by effectively using domain-invariant knowledge from the source.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10949131/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Source-free domain adaptive object detection (SFOD) enables detectors trained on a source domain to be deployed to unlabeled target domains without access to the source data, thus addressing concerns about data privacy and efficiency. Existing SFOD methods typically use a mean-teacher (MT) self-training paradigm with high-confidence pseudolabels (HPLs). However, HPLs often overlook small objects in novel domain conditions, leading to biased adaptation of the student detector. This issue is particularly problematic in remote sensing (RS) datasets dominated by small vehicles. To overcome this limitation, we introduce the low-confidence pseudolabel distillation for aerial (LPLDA) scenes framework, which leverages low-confidence proposals to improve the adaptation of small objects in the target domain. Moreover, we enhance the low-confidence pseudolabel (LPL) mining process with an instance consistency (IC) loss that reinforces teacher-student consistency, making small-object features more robust to domain shifts. Extensive experiments across four practical domain shift scenarios show that our method reduces false negatives for small objects and outperforms previous SFOD approaches by effectively using domain-invariant knowledge from the source.
基于低置信度伪标签的遥感目标检测无源域自适应
无源域自适应目标检测(SFOD)可将在源域上训练的检测器部署到无标记的目标域上,而无需访问源数据,从而解决了数据隐私和效率方面的问题。现有的 SFOD 方法通常使用高置信度伪标签(HPL)的均值教师(MT)自我训练范式。然而,HPL 通常会忽略新领域条件下的小物体,从而导致学生检测器的适应性出现偏差。在以小型车辆为主的遥感(RS)数据集中,这一问题尤为突出。为了克服这一局限性,我们引入了航空低置信度伪标签蒸馏(LPLDA)场景框架,该框架利用低置信度建议来改善目标域中小规模物体的适应性。此外,我们还通过实例一致性(IC)损失来增强低置信度伪标签(LPL)挖掘过程,从而加强师生一致性,使小对象特征对域偏移更具鲁棒性。在四种实际领域转换场景中进行的广泛实验表明,我们的方法有效地利用了源领域不变知识,从而减少了小对象的假否定,其性能优于以前的 SFOD 方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信