{"title":"Mode-Dependent Filtering for Networked Semi-Markov Jump Systems by an AET-Based Round-Robin Protocol","authors":"Wei Qian;Wudi Li;Yanmin Wu;Bin Xu","doi":"10.1109/TNSE.2025.3547935","DOIUrl":null,"url":null,"abstract":"This article is devoted to the mode-dependent <inline-formula><tex-math>$\\bm {\\mathcal {H}}_{\\infty }$</tex-math></inline-formula> filtering problem for a class of networked semi-Markov jump systems subject to multisensor transmission noises. Considering the constraints of limited bandwidth in practical engineering applications, a new data transmission mechanism of adaptive event triggered-based round-robin protocol is proposed, which can simultaneously save communication resources and reduce data conflicts between the sensor network and the remote filter. Meanwhile, to more accurately describe the complexity of the communication network environment, the data transmission mechanism includes transmission noises, mode information of the systems and semi-Markov switching parameters, which can enhance the flexibility of data transmission. Then, by utilizing the vector augmentation method, a novel mode-dependent <inline-formula><tex-math>$\\bm {\\mathcal {H}}_{\\infty }$</tex-math></inline-formula> filter structure integrating semi-Markov jump modes and sensor scheduling nodes is constructed, which can improve the estimation performance of the filter. Next, by considering the upper bound of sojourn time for all system modes, a non-monotonic Lyapunov function is constructed to get hold of the conservative results by relaxing the monotonic requirement of sojourn time. Based on the semi-definite programming technique and vector augmentation method, sufficient conditions are acquired that guarantee the <inline-formula><tex-math>$\\bm {\\sigma }$</tex-math></inline-formula>-error mean-square stability of filtering error dynamics with prescribed <inline-formula><tex-math>$\\bm {\\mathcal {H}}_{\\infty }$</tex-math></inline-formula> performance, and the desired filter parameters can be calculated by solving some recursive linear matrix inequalities. Ultimately, a numerical example and a practical example of F-404 aircraft engine system are carried out to validate the effectiveness and applicability of the proposed filter design strategy.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"12 3","pages":"2373-2387"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10909459/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This article is devoted to the mode-dependent $\bm {\mathcal {H}}_{\infty }$ filtering problem for a class of networked semi-Markov jump systems subject to multisensor transmission noises. Considering the constraints of limited bandwidth in practical engineering applications, a new data transmission mechanism of adaptive event triggered-based round-robin protocol is proposed, which can simultaneously save communication resources and reduce data conflicts between the sensor network and the remote filter. Meanwhile, to more accurately describe the complexity of the communication network environment, the data transmission mechanism includes transmission noises, mode information of the systems and semi-Markov switching parameters, which can enhance the flexibility of data transmission. Then, by utilizing the vector augmentation method, a novel mode-dependent $\bm {\mathcal {H}}_{\infty }$ filter structure integrating semi-Markov jump modes and sensor scheduling nodes is constructed, which can improve the estimation performance of the filter. Next, by considering the upper bound of sojourn time for all system modes, a non-monotonic Lyapunov function is constructed to get hold of the conservative results by relaxing the monotonic requirement of sojourn time. Based on the semi-definite programming technique and vector augmentation method, sufficient conditions are acquired that guarantee the $\bm {\sigma }$-error mean-square stability of filtering error dynamics with prescribed $\bm {\mathcal {H}}_{\infty }$ performance, and the desired filter parameters can be calculated by solving some recursive linear matrix inequalities. Ultimately, a numerical example and a practical example of F-404 aircraft engine system are carried out to validate the effectiveness and applicability of the proposed filter design strategy.
期刊介绍:
The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.