Zhijiong Wang;Anguo Zhang;Hung Chun Li;Yadong Yin;Wei Chen;Chan Tong Lam;Peng Un Mak;Mang I Vai;Yueming Gao;Sio Hang Pun
{"title":"DFE: Deep Flow Embedding for Robust Network Traffic Classification","authors":"Zhijiong Wang;Anguo Zhang;Hung Chun Li;Yadong Yin;Wei Chen;Chan Tong Lam;Peng Un Mak;Mang I Vai;Yueming Gao;Sio Hang Pun","doi":"10.1109/TNSE.2025.3535577","DOIUrl":null,"url":null,"abstract":"People's increasing demand for high-quality network services has prompted the continuous attention and development of network traffic classification (NTC). In recent years, deep flow inspection (DFI) is considered to be the most effective and promising method to solve the NTC. However, DFI still cannot effectively address the problem of changes in flow characteristics of complex packet flows and the discovery of new traffic categories. In this paper, we propose a metric learning based deep learning solution with feature compressor, named deep flow embedding (DFE). The feature compressor is used to compress the feature information transmitted layer by layer in DL backbone while maintaining the computational accuracy, so that the backbone can remove as much noise, redundancy, and other irrelevant information from the input data as possible, and achieve more robust feature extraction of network traffic flow. The deep learning (DL) backbone generates an embedding vector for each network packet flow. Then the embedding vector is compared with the vector template preset for each traffic type in the template library to determine the category of the packet flow. Experimental results verify that our method is more effective than the traditional DFI methods in overcoming the problems of flow characteristics variation and new category discovery.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"12 3","pages":"1597-1612"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10856394/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
People's increasing demand for high-quality network services has prompted the continuous attention and development of network traffic classification (NTC). In recent years, deep flow inspection (DFI) is considered to be the most effective and promising method to solve the NTC. However, DFI still cannot effectively address the problem of changes in flow characteristics of complex packet flows and the discovery of new traffic categories. In this paper, we propose a metric learning based deep learning solution with feature compressor, named deep flow embedding (DFE). The feature compressor is used to compress the feature information transmitted layer by layer in DL backbone while maintaining the computational accuracy, so that the backbone can remove as much noise, redundancy, and other irrelevant information from the input data as possible, and achieve more robust feature extraction of network traffic flow. The deep learning (DL) backbone generates an embedding vector for each network packet flow. Then the embedding vector is compared with the vector template preset for each traffic type in the template library to determine the category of the packet flow. Experimental results verify that our method is more effective than the traditional DFI methods in overcoming the problems of flow characteristics variation and new category discovery.
期刊介绍:
The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.