{"title":"Spatial Disease Propagation With Hubs","authors":"Ke Feng;Martin Haenggi","doi":"10.1109/TNSE.2025.3545386","DOIUrl":null,"url":null,"abstract":"Physical contact or proximity is often a necessary condition for the spread of infectious diseases. Common destinations, typically referred to as hubs or points of interest, are arguably the most effective spots for the type of disease spread via airborne transmission. In this work, we model the locations of individuals (agents) and common destinations (hubs) by random spatial point processes in <inline-formula><tex-math>$\\mathscr {R}^{d}$</tex-math></inline-formula> and focus on disease propagation through agents visiting common hubs. The probability of an agent visiting a hub depends on their distance through a connection function <inline-formula><tex-math>$f$</tex-math></inline-formula>. The system is represented by a random bipartite geometric (RBG) graph. We study the degrees and percolation of the RBG graph for general connection functions. We show that the critical density of hubs for percolation is dictated by the support of the connection function <inline-formula><tex-math>$f$</tex-math></inline-formula>, which reveals the critical role of long-distance travel (or its restrictions) in disease spreading.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"12 3","pages":"2180-2187"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10902186/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Physical contact or proximity is often a necessary condition for the spread of infectious diseases. Common destinations, typically referred to as hubs or points of interest, are arguably the most effective spots for the type of disease spread via airborne transmission. In this work, we model the locations of individuals (agents) and common destinations (hubs) by random spatial point processes in $\mathscr {R}^{d}$ and focus on disease propagation through agents visiting common hubs. The probability of an agent visiting a hub depends on their distance through a connection function $f$. The system is represented by a random bipartite geometric (RBG) graph. We study the degrees and percolation of the RBG graph for general connection functions. We show that the critical density of hubs for percolation is dictated by the support of the connection function $f$, which reveals the critical role of long-distance travel (or its restrictions) in disease spreading.
期刊介绍:
The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.