Towards Adaptive Masked Structural Learning for Graph-Level Clustering

IF 6.7 2区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Jinbin Yang;Jinyu Cai;Yunhe Zhang;Sujia Huang;Shiping Wang
{"title":"Towards Adaptive Masked Structural Learning for Graph-Level Clustering","authors":"Jinbin Yang;Jinyu Cai;Yunhe Zhang;Sujia Huang;Shiping Wang","doi":"10.1109/TNSE.2025.3543194","DOIUrl":null,"url":null,"abstract":"Graph data presents a vast landscape for real-world applications. Current graph-level clustering approaches predominantly utilize graph neural networks to capture the intricate structural information for graph data. However, a significant challenge arises in effectively integrate structural and feature information under the prevalent noise in the real-world scenario. The advent of masking strategies has marked significant strides in boosting model robustness, accommodating incomplete data, and enhancing generalization capabilities. Yet, research attention on leveraging mask strategy for facilitating graph-level clustering is still limited. In this paper, we introduce a novel graph-level clustering method, towards adaptive masked structural learning for graph-level clustering. The method performs adaptive masking through reconstruction loss, and jointly adaptive mask representation learning and clustering in an end-to-end unsupervised framework. The mutual information between maximized the entire graph and substructure representations is also utilized to learn to generate cluster-oriented graph-level representations. Extensive experiments on eight real graph-level benchmark datasets demonstrate the effectiveness and superiority of the proposed method.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"12 3","pages":"2021-2032"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10891751/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Graph data presents a vast landscape for real-world applications. Current graph-level clustering approaches predominantly utilize graph neural networks to capture the intricate structural information for graph data. However, a significant challenge arises in effectively integrate structural and feature information under the prevalent noise in the real-world scenario. The advent of masking strategies has marked significant strides in boosting model robustness, accommodating incomplete data, and enhancing generalization capabilities. Yet, research attention on leveraging mask strategy for facilitating graph-level clustering is still limited. In this paper, we introduce a novel graph-level clustering method, towards adaptive masked structural learning for graph-level clustering. The method performs adaptive masking through reconstruction loss, and jointly adaptive mask representation learning and clustering in an end-to-end unsupervised framework. The mutual information between maximized the entire graph and substructure representations is also utilized to learn to generate cluster-oriented graph-level representations. Extensive experiments on eight real graph-level benchmark datasets demonstrate the effectiveness and superiority of the proposed method.
面向图级聚类的自适应屏蔽结构学习
图形数据为现实世界的应用提供了广阔的前景。当前的图级聚类方法主要利用图神经网络来捕获图数据中复杂的结构信息。然而,在现实场景中,如何在普遍存在的噪声下有效地整合结构和特征信息是一个重大的挑战。掩蔽策略的出现在增强模型鲁棒性、适应不完整数据和增强泛化能力方面取得了重大进展。然而,利用掩码策略促进图级聚类的研究仍然有限。本文介绍了一种新的图级聚类方法,用于图级聚类的自适应屏蔽结构学习。该方法通过重建损失实现自适应掩码,并在端到端无监督框架中进行自适应掩码表示学习和聚类。利用最大化整个图和子结构表示之间的互信息来学习生成面向聚类的图级表示。在8个真实图级基准数据集上的大量实验证明了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Network Science and Engineering
IEEE Transactions on Network Science and Engineering Engineering-Control and Systems Engineering
CiteScore
12.60
自引率
9.10%
发文量
393
期刊介绍: The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信