{"title":"Particle swarm optimization algorithm based on teaming behavior","authors":"Yu-Feng Yu , Ziwei Wang , Xinjia Chen , Qiying Feng","doi":"10.1016/j.knosys.2025.113555","DOIUrl":null,"url":null,"abstract":"<div><div>The traditional particle swarm optimization algorithms have some shortcomings, such as low convergence precision, slow convergence speed, and susceptibility to falling into local optima when solving complex optimization problems. To address these issues, this paper proposes a new particle swarm optimization algorithm that incorporates teamwork. Specifically, we introduce the concept of teamwork, and divide the particles into multiple teams and selecting team leaders. The particles can fully utilize the team’s prompt information to guide the search process. The team leader updates the search direction of its particles through the generation of information factors, thus giving the algorithm better global search capabilities. The position and behavior of the team leader affect the search behavior of other particles, reducing the risk of falling into local optimal solutions. In addition, to further improve the algorithm’s efficiency, we propose adaptive adjustment of information factors and learning factors. This adaptive adjustment mechanism enables the algorithm to adjust parameters flexibly according to the characteristics of the problem and the current search state, thereby accelerating convergence speed and improving convergence precision. To verify the performance of the proposed algorithm, we make an empirical analysis on 27 different test functions, the shortest path problem and the optimal SINR value problem for UAV deployment. The experimental results show that the proposed algorithm has obvious advantages in convergence accuracy and convergence speed. Compared with other algorithms, this algorithm can find a better solution faster and converge to the global optimal solution more stably.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"318 ","pages":"Article 113555"},"PeriodicalIF":7.2000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095070512500601X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The traditional particle swarm optimization algorithms have some shortcomings, such as low convergence precision, slow convergence speed, and susceptibility to falling into local optima when solving complex optimization problems. To address these issues, this paper proposes a new particle swarm optimization algorithm that incorporates teamwork. Specifically, we introduce the concept of teamwork, and divide the particles into multiple teams and selecting team leaders. The particles can fully utilize the team’s prompt information to guide the search process. The team leader updates the search direction of its particles through the generation of information factors, thus giving the algorithm better global search capabilities. The position and behavior of the team leader affect the search behavior of other particles, reducing the risk of falling into local optimal solutions. In addition, to further improve the algorithm’s efficiency, we propose adaptive adjustment of information factors and learning factors. This adaptive adjustment mechanism enables the algorithm to adjust parameters flexibly according to the characteristics of the problem and the current search state, thereby accelerating convergence speed and improving convergence precision. To verify the performance of the proposed algorithm, we make an empirical analysis on 27 different test functions, the shortest path problem and the optimal SINR value problem for UAV deployment. The experimental results show that the proposed algorithm has obvious advantages in convergence accuracy and convergence speed. Compared with other algorithms, this algorithm can find a better solution faster and converge to the global optimal solution more stably.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.