From Dock to Destination: Toward an End-to-End Simulation Study

Kevin Power, Yassine Lahlou-Kamal, Nikolay Aristov, Elenna Dugundji, Thomas Koch
{"title":"From Dock to Destination: Toward an End-to-End Simulation Study","authors":"Kevin Power,&nbsp;Yassine Lahlou-Kamal,&nbsp;Nikolay Aristov,&nbsp;Elenna Dugundji,&nbsp;Thomas Koch","doi":"10.1016/j.procs.2025.03.062","DOIUrl":null,"url":null,"abstract":"<div><div>This study uses a discrete-event simulation model, built with open-source software, to analyze import container flows at the Port of New York/New Jersey. The model integrates input and parameter distributions derived from extensive data analysis of publicly available import records, enhanced by machine learning techniques, including Natural Language Processing for commodity classification using unstructured shipping manifest product descriptions. Initial results demonstrate the effectiveness of Gaussian Kernel Density Estimate (KDE) and Fourier models in representing container dwell times, reducing mean absolute error compared to normal distribution by up to 39.5% for dry containers and 24.8% for reefers. A fine-tuned BERT model achieves over 80% accuracy in commodity classification to the four-digit HS code level, enabling improved input data structuring for simulation. Initial scenario testing indicates increasing outbound rail freight from 15% to 25% of total containers reduces truck congestion by 11.5% and decreases median dwell time by 1.52% for dry containers and 2.55% for reefers. These findings highlight the potential for logistical adjustments to improve efficiency and reduce congestion at the Port of New York/New Jersey.</div></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"257 ","pages":"Pages 477-484"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050925007987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study uses a discrete-event simulation model, built with open-source software, to analyze import container flows at the Port of New York/New Jersey. The model integrates input and parameter distributions derived from extensive data analysis of publicly available import records, enhanced by machine learning techniques, including Natural Language Processing for commodity classification using unstructured shipping manifest product descriptions. Initial results demonstrate the effectiveness of Gaussian Kernel Density Estimate (KDE) and Fourier models in representing container dwell times, reducing mean absolute error compared to normal distribution by up to 39.5% for dry containers and 24.8% for reefers. A fine-tuned BERT model achieves over 80% accuracy in commodity classification to the four-digit HS code level, enabling improved input data structuring for simulation. Initial scenario testing indicates increasing outbound rail freight from 15% to 25% of total containers reduces truck congestion by 11.5% and decreases median dwell time by 1.52% for dry containers and 2.55% for reefers. These findings highlight the potential for logistical adjustments to improve efficiency and reduce congestion at the Port of New York/New Jersey.
从码头到目的地:对端到端模拟研究
本研究采用离散事件模拟模型,利用开源软件构建,分析了纽约/新泽西港的进口集装箱流。该模型集成了从公开进口记录的大量数据分析中得出的输入和参数分布,并通过机器学习技术得到增强,包括使用非结构化运输舱单产品描述进行商品分类的自然语言处理。初步结果表明,高斯核密度估计(KDE)和傅立叶模型在表示容器停留时间方面是有效的,与正态分布相比,干燥容器的平均绝对误差降低了39.5%,冷藏容器的平均绝对误差降低了24.8%。经过微调的BERT模型在商品分类方面达到了80%以上的准确率,达到了四位HS编码水平,从而改进了模拟的输入数据结构。初步情景测试表明,将出站铁路货运从集装箱总量的15%增加到25%,可减少11.5%的卡车拥堵,并将干集装箱和冷藏集装箱的平均停留时间分别减少1.52%和2.55%。这些发现强调了在纽约/新泽西港进行物流调整以提高效率和减少拥堵的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信