On the dynamics of a complex continued fraction map which contains the Gauss map as its real number section

IF 1.5 1区 数学 Q1 MATHEMATICS
Hiromi Ei , Hitoshi Nakada , Rie Natsui
{"title":"On the dynamics of a complex continued fraction map which contains the Gauss map as its real number section","authors":"Hiromi Ei ,&nbsp;Hitoshi Nakada ,&nbsp;Rie Natsui","doi":"10.1016/j.aim.2025.110286","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the complex continued fraction map <em>T</em> defined by R. Kaneiwa, I. Shiokawa, and J. Tamura (1975) associated with the Eisenstein field <span><math><mi>Q</mi><mo>(</mo><msqrt><mrow><mo>−</mo><mn>3</mn></mrow></msqrt><mo>)</mo></math></span>. A significant aspect of their continued fraction map is that the real number part of this map <em>T</em> is exactly the simple continued fraction map (Gauss map). In this paper we characterize the set of strictly periodic expansions of continued fraction expansions associated to this map in terms of quadratic extensions of <span><math><mi>Q</mi><mo>(</mo><msqrt><mrow><mo>−</mo><mn>3</mn></mrow></msqrt><mo>)</mo></math></span> in connection with the closure of <span><math><mo>{</mo><mo>−</mo><mfrac><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></mfrac><mo>:</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>}</mo></math></span>, where <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>0</mn></math></span>, is the denominator of the <em>n</em>th principal convergent of the continued fraction expansion. Moreover, we show that the closure of <span><math><mo>{</mo><mo>−</mo><mfrac><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></mfrac><mo>:</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>}</mo></math></span> has positive Lebesgue measure on the complex plane <span><math><mi>C</mi></math></span> though it has infinitely many holes. This gives us that the construction of the natural extension of <em>T</em> on a subset of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∖</mo><mo>{</mo><mtext>diagonal</mtext><mo>}</mo></math></span> is equivalent to the geodesics over the hyperbolic space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. Then the invariant measure for the natural extension map is given by the hyperbolic measure. Hence its projection to the complex plane is obviously the invariant measure for <em>T</em>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"472 ","pages":"Article 110286"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001847","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the complex continued fraction map T defined by R. Kaneiwa, I. Shiokawa, and J. Tamura (1975) associated with the Eisenstein field Q(3). A significant aspect of their continued fraction map is that the real number part of this map T is exactly the simple continued fraction map (Gauss map). In this paper we characterize the set of strictly periodic expansions of continued fraction expansions associated to this map in terms of quadratic extensions of Q(3) in connection with the closure of {qnqn1:n1}, where qn, n0, is the denominator of the nth principal convergent of the continued fraction expansion. Moreover, we show that the closure of {qnqn1:n1} has positive Lebesgue measure on the complex plane C though it has infinitely many holes. This gives us that the construction of the natural extension of T on a subset of C2{diagonal} is equivalent to the geodesics over the hyperbolic space H3. Then the invariant measure for the natural extension map is given by the hyperbolic measure. Hence its projection to the complex plane is obviously the invariant measure for T.
以高斯映射为实数部分的复连分数映射的动力学
我们考虑由R. Kaneiwa, I. Shiokawa和J. Tamura(1975)定义的与爱森斯坦场Q(−3)相关的复连分数映射T。它们的连分式映射的一个重要方面是这个映射T的实数部分恰好是简单的连分式映射(高斯映射)。本文用Q(−3)的二次展开式与{−qnqn−1:n≥1}闭包刻画了与该映射相关的连分式展开式的严格周期展开式集合,其中qn, n≥0是连分式展开式的第n个主收敛的分母。此外,我们还证明了{−qnqn−1:n≥1}的闭包在复平面C上具有正的勒贝格测度,尽管它有无穷多个孔。这给出了T在C2∈{对角线}子集上的自然扩展的构造等价于双曲空间H3上的测地线。然后用双曲测度给出了自然可拓映射的不变测度。因此它在复平面上的投影显然是T的不变测度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信