Braid group actions on branched coverings and full exceptional sequences

IF 1.5 1区 数学 Q1 MATHEMATICS
Wen Chang , Fabian Haiden , Sibylle Schroll
{"title":"Braid group actions on branched coverings and full exceptional sequences","authors":"Wen Chang ,&nbsp;Fabian Haiden ,&nbsp;Sibylle Schroll","doi":"10.1016/j.aim.2025.110284","DOIUrl":null,"url":null,"abstract":"<div><div>We relate full exceptional sequences in Fukaya categories of surfaces or equivalently in derived categories of graded gentle algebras to branched coverings over the disk, building on a previous classification result of the first and third author <span><span>[5]</span></span>. This allows us to apply tools from the theory of branched coverings such as Birman–Hilden theory and Hurwitz systems to study the natural braid group action on exceptional sequences. As an application, counterexamples are given to a conjecture of Bondal–Polishchuk <span><span>[3]</span></span> on the transitivity of the braid group action on full exceptional sequences in a triangulated category.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"472 ","pages":"Article 110284"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001823","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We relate full exceptional sequences in Fukaya categories of surfaces or equivalently in derived categories of graded gentle algebras to branched coverings over the disk, building on a previous classification result of the first and third author [5]. This allows us to apply tools from the theory of branched coverings such as Birman–Hilden theory and Hurwitz systems to study the natural braid group action on exceptional sequences. As an application, counterexamples are given to a conjecture of Bondal–Polishchuk [3] on the transitivity of the braid group action on full exceptional sequences in a triangulated category.
分支覆盖物和全例外序列上的群作用
在第一和第三作者[5]的分类结果的基础上,我们将曲面的Fukaya类或等量的梯度平缓代数的派生类中的完全例外序列与盘上的分支覆盖联系起来。这使得我们可以应用分支覆盖理论中的工具,如Birman-Hilden理论和Hurwitz系统来研究例外序列上的自然辫群作用。作为应用,给出了关于三角化范畴中满例外序列上辫群作用可传递性的Bondal-Polishchuk[3]猜想的反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信