Optimized DV-Hop Localization Algorithm Using PSO for IoT and WSNs

Abdelali Hadir , Naima Kaabouch , Fatima El Jamiy , Mohammed-Alamine El Houssain
{"title":"Optimized DV-Hop Localization Algorithm Using PSO for IoT and WSNs","authors":"Abdelali Hadir ,&nbsp;Naima Kaabouch ,&nbsp;Fatima El Jamiy ,&nbsp;Mohammed-Alamine El Houssain","doi":"10.1016/j.procs.2025.03.089","DOIUrl":null,"url":null,"abstract":"<div><div>Sensor node localization is a critical issue in various Internet of Things (IoT) and Wireless Sensor Network (WSN) applications that require precise location data. Among the proposed solutions, the DV-Hop algorithm has been widely adopted to address this issue. However, achieving high localization accuracy remains a significant research challenge. This study introduces a novel approach to minimizing errors in estimating the average hop size using a new formula. Furthermore, the metaheuristic particle swarm optimization (PSO) is integrated into the DV-Hop method to refine the estimated locations of sensor nodes, enhancing localization accuracy. Extensive simulations demonstrate that the proposed technique outperforms several existing methods. The results indicate that the proposed approach significantly improves localization accuracy, with the ODV-HopPSO algorithm surpassing existing methods in terms of error reduction.</div></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"257 ","pages":"Pages 690-697"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050925008269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sensor node localization is a critical issue in various Internet of Things (IoT) and Wireless Sensor Network (WSN) applications that require precise location data. Among the proposed solutions, the DV-Hop algorithm has been widely adopted to address this issue. However, achieving high localization accuracy remains a significant research challenge. This study introduces a novel approach to minimizing errors in estimating the average hop size using a new formula. Furthermore, the metaheuristic particle swarm optimization (PSO) is integrated into the DV-Hop method to refine the estimated locations of sensor nodes, enhancing localization accuracy. Extensive simulations demonstrate that the proposed technique outperforms several existing methods. The results indicate that the proposed approach significantly improves localization accuracy, with the ODV-HopPSO algorithm surpassing existing methods in terms of error reduction.
基于PSO的物联网和无线传感器网络DV-Hop定位算法优化
在各种需要精确位置数据的物联网(IoT)和无线传感器网络(WSN)应用中,传感器节点定位是一个关键问题。在提出的解决方案中,DV-Hop算法被广泛采用来解决这个问题。然而,实现高定位精度仍然是一个重大的研究挑战。本文介绍了一种利用新公式来最小化估计平均跳长误差的新方法。在此基础上,将元启发式粒子群算法(PSO)融入到DV-Hop方法中,对传感器节点的估计位置进行细化,提高了定位精度。大量的仿真结果表明,该方法优于现有的几种方法。结果表明,该方法显著提高了定位精度,ODV-HopPSO算法在减小误差方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信