Rethinking attention mechanism for enhanced pedestrian attribute recognition

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Junyi Wu , Yan Huang , Min Gao , Yuzhen Niu , Yuzhong Chen , Qiang Wu
{"title":"Rethinking attention mechanism for enhanced pedestrian attribute recognition","authors":"Junyi Wu ,&nbsp;Yan Huang ,&nbsp;Min Gao ,&nbsp;Yuzhen Niu ,&nbsp;Yuzhong Chen ,&nbsp;Qiang Wu","doi":"10.1016/j.neucom.2025.130236","DOIUrl":null,"url":null,"abstract":"<div><div>Pedestrian Attribute Recognition (PAR) plays a crucial role in various computer vision applications, demanding precise and reliable identification of attributes from pedestrian images. Traditional PAR methods, though effective in leveraging attention mechanisms, often suffer from the lack of direct supervision on attention, leading to potential overfitting and misallocation. This paper introduces a novel and model-agnostic approach, Attention-Aware Regularization (AAR), which rethinks the attention mechanism by integrating causal reasoning to provide direct supervision of attention maps. AAR employs perturbation techniques and a unique optimization objective to assess and refine attention quality, encouraging the model to prioritize attribute-specific regions. Our method demonstrates significant improvement in PAR performance by mitigating the effects of incorrect attention and fostering a more effective attention mechanism. Experiments on standard datasets showcase the superiority of our approach over existing methods, setting a new benchmark for attention-driven PAR models.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"639 ","pages":"Article 130236"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225009087","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Pedestrian Attribute Recognition (PAR) plays a crucial role in various computer vision applications, demanding precise and reliable identification of attributes from pedestrian images. Traditional PAR methods, though effective in leveraging attention mechanisms, often suffer from the lack of direct supervision on attention, leading to potential overfitting and misallocation. This paper introduces a novel and model-agnostic approach, Attention-Aware Regularization (AAR), which rethinks the attention mechanism by integrating causal reasoning to provide direct supervision of attention maps. AAR employs perturbation techniques and a unique optimization objective to assess and refine attention quality, encouraging the model to prioritize attribute-specific regions. Our method demonstrates significant improvement in PAR performance by mitigating the effects of incorrect attention and fostering a more effective attention mechanism. Experiments on standard datasets showcase the superiority of our approach over existing methods, setting a new benchmark for attention-driven PAR models.
增强行人属性识别的注意机制再思考
行人属性识别(PAR)在各种计算机视觉应用中起着至关重要的作用,它要求从行人图像中准确、可靠地识别出行人属性。传统的PAR方法虽然能够有效地利用注意机制,但往往缺乏对注意的直接监督,导致潜在的过拟合和错配。本文介绍了一种新颖的、模型不可知的方法——注意意识正则化(attention - aware Regularization, AAR),它通过整合因果推理来重新思考注意机制,从而提供对注意图的直接监督。AAR采用扰动技术和独特的优化目标来评估和改进注意力质量,鼓励模型优先考虑特定属性的区域。我们的方法通过减轻错误注意的影响和培养更有效的注意机制,显着提高了PAR的性能。在标准数据集上的实验显示了我们的方法优于现有方法,为注意力驱动PAR模型设定了新的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信