Junyi Wu , Yan Huang , Min Gao , Yuzhen Niu , Yuzhong Chen , Qiang Wu
{"title":"Rethinking attention mechanism for enhanced pedestrian attribute recognition","authors":"Junyi Wu , Yan Huang , Min Gao , Yuzhen Niu , Yuzhong Chen , Qiang Wu","doi":"10.1016/j.neucom.2025.130236","DOIUrl":null,"url":null,"abstract":"<div><div>Pedestrian Attribute Recognition (PAR) plays a crucial role in various computer vision applications, demanding precise and reliable identification of attributes from pedestrian images. Traditional PAR methods, though effective in leveraging attention mechanisms, often suffer from the lack of direct supervision on attention, leading to potential overfitting and misallocation. This paper introduces a novel and model-agnostic approach, Attention-Aware Regularization (AAR), which rethinks the attention mechanism by integrating causal reasoning to provide direct supervision of attention maps. AAR employs perturbation techniques and a unique optimization objective to assess and refine attention quality, encouraging the model to prioritize attribute-specific regions. Our method demonstrates significant improvement in PAR performance by mitigating the effects of incorrect attention and fostering a more effective attention mechanism. Experiments on standard datasets showcase the superiority of our approach over existing methods, setting a new benchmark for attention-driven PAR models.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"639 ","pages":"Article 130236"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225009087","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Pedestrian Attribute Recognition (PAR) plays a crucial role in various computer vision applications, demanding precise and reliable identification of attributes from pedestrian images. Traditional PAR methods, though effective in leveraging attention mechanisms, often suffer from the lack of direct supervision on attention, leading to potential overfitting and misallocation. This paper introduces a novel and model-agnostic approach, Attention-Aware Regularization (AAR), which rethinks the attention mechanism by integrating causal reasoning to provide direct supervision of attention maps. AAR employs perturbation techniques and a unique optimization objective to assess and refine attention quality, encouraging the model to prioritize attribute-specific regions. Our method demonstrates significant improvement in PAR performance by mitigating the effects of incorrect attention and fostering a more effective attention mechanism. Experiments on standard datasets showcase the superiority of our approach over existing methods, setting a new benchmark for attention-driven PAR models.
期刊介绍:
Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.