SSSI-L2p: An EEG extended source imaging algorithm based on the structured sparse regularization with L2p-Norm

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shu Peng , Hongyu Li , Yujie Deng , Hong Yu , Weibo Yi , Ke Liu
{"title":"SSSI-L2p: An EEG extended source imaging algorithm based on the structured sparse regularization with L2p-Norm","authors":"Shu Peng ,&nbsp;Hongyu Li ,&nbsp;Yujie Deng ,&nbsp;Hong Yu ,&nbsp;Weibo Yi ,&nbsp;Ke Liu","doi":"10.1016/j.neucom.2025.130250","DOIUrl":null,"url":null,"abstract":"<div><div>Electroencephalographic (EEG) source imaging (ESI) aims to estimate brain activity locations and extents. ESI is crucial for studying brain functions and detecting epileptic foci. However, accurately reconstructing extended sources remains challenging due to high susceptibility of EEG signals to interference and the underdetermined nature of the ESI problem. In this study, we introduce a new ESI algorithm, Structured Sparse Source Imaging based on <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub></math></span>-norm (SSSI-<span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub></math></span>), to estimate potential brain activities. SSSI-<span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub></math></span> utilizes the mixed <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub></math></span>-norm (<span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>) to enforce spatial–temporal constraints within a structured sparsity regularization framework. By leveraging the alternating direction method of multipliers (ADMM) and iteratively reweighted least squares (IRLS) algorithm, the challenging optimization problem of SSSI-<span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub></math></span> can be effectively solved. We showcase the superior performance of SSSI-<span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub></math></span> over benchmark ESI methods through numerical simulations and human clinical data. Our results demonstrate that sources reconstructed by SSSI-<span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub></math></span> exhibit high spatial resolution and clear boundaries, highlighting its potential as a robust and effective ESI technique. Additionally, we have shared the source code of SSSI-<span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub></math></span> at <span><span>https://github.com/Mashirops/SSSI-L2p.git</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"639 ","pages":"Article 130250"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225009221","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Electroencephalographic (EEG) source imaging (ESI) aims to estimate brain activity locations and extents. ESI is crucial for studying brain functions and detecting epileptic foci. However, accurately reconstructing extended sources remains challenging due to high susceptibility of EEG signals to interference and the underdetermined nature of the ESI problem. In this study, we introduce a new ESI algorithm, Structured Sparse Source Imaging based on L2p-norm (SSSI-L2p), to estimate potential brain activities. SSSI-L2p utilizes the mixed L2p-norm (0<p<1) to enforce spatial–temporal constraints within a structured sparsity regularization framework. By leveraging the alternating direction method of multipliers (ADMM) and iteratively reweighted least squares (IRLS) algorithm, the challenging optimization problem of SSSI-L2p can be effectively solved. We showcase the superior performance of SSSI-L2p over benchmark ESI methods through numerical simulations and human clinical data. Our results demonstrate that sources reconstructed by SSSI-L2p exhibit high spatial resolution and clear boundaries, highlighting its potential as a robust and effective ESI technique. Additionally, we have shared the source code of SSSI-L2p at https://github.com/Mashirops/SSSI-L2p.git.
SSSI-L2p:一种基于l2p范数的结构化稀疏正则化的脑电图扩展源成像算法
脑电图(EEG)源成像(ESI)旨在估计大脑活动的位置和程度。ESI对于研究脑功能和检测癫痫灶至关重要。然而,由于脑电图信号对干扰的高度敏感性以及ESI问题的不确定性,准确重建扩展源仍然具有挑战性。在这项研究中,我们引入了一种新的ESI算法,基于L2p-norm的结构化稀疏源成像(SSSI-L2p),来估计潜在的大脑活动。SSSI-L2p利用混合l2p -范数(0<p<1)在结构化稀疏性正则化框架内强制实施时空约束。利用乘法器交替方向法(ADMM)和迭代加权最小二乘(IRLS)算法,可以有效地解决SSSI-L2p的优化问题。我们通过数值模拟和人类临床数据展示了SSSI-L2p优于基准ESI方法的性能。结果表明,SSSI-L2p重建的源具有较高的空间分辨率和清晰的边界,突出了其作为稳健有效的ESI技术的潜力。此外,我们还在https://github.com/Mashirops/SSSI-L2p.git上共享了SSSI-L2p的源代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信