Microporous poly(aryl piperidinium) hydroxide exchange membranes with multi-directional branched structure for high performance fuel cells

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Jian Gao , Jialin Zhao , Shiyao Sun , Yijia Lei , Na Li , Jingyi Wu , Qianlong Wang , Yifang Chang , Jiayao Yang , Zhe Wang
{"title":"Microporous poly(aryl piperidinium) hydroxide exchange membranes with multi-directional branched structure for high performance fuel cells","authors":"Jian Gao ,&nbsp;Jialin Zhao ,&nbsp;Shiyao Sun ,&nbsp;Yijia Lei ,&nbsp;Na Li ,&nbsp;Jingyi Wu ,&nbsp;Qianlong Wang ,&nbsp;Yifang Chang ,&nbsp;Jiayao Yang ,&nbsp;Zhe Wang","doi":"10.1016/j.jcis.2025.137676","DOIUrl":null,"url":null,"abstract":"<div><div>Hydroxide exchange membranes (HEMs) are important materials for energy conversion devices in hydroxide exchange membrane fuel cells (HEMFCs). This study details a series of multi-directional branched HEMs containing octaphenylcyclotetrasiloxane (OCSi). The OCSi structure allows for the establishment of continuous OH<sup>−</sup> conducting channels within the membrane while addressing the prevailing trade-off between ionic conductivity and size/mechanical stability. Thanks to the formation of fine microphase-separated morphologies, the quaternized poly(octaphenylcyclotetrasiloxane-terphenyl-piperidinium) (QPOCSi-TP-2) membrane has high conductivity (152.9 mS cm<sup>−1</sup> at 80 °C), excellent mechanical stability (tensile strength of 76.5 MPa) and outstanding chemical stability (1500 h in 5 M NaOH at 80 °C). In H<sub>2</sub>/O<sub>2</sub> cell tests at 80 °C, the peak power density of the QPOCSi-TP-2 membrane reaches 1.26 W cm<sup>−2</sup>. During 120 h of operation at 100 m A cm<sup>−2</sup>, the voltage degradation rate of the cell is 1.02 mV h<sup>−1</sup>.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"694 ","pages":"Article 137676"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725010677","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydroxide exchange membranes (HEMs) are important materials for energy conversion devices in hydroxide exchange membrane fuel cells (HEMFCs). This study details a series of multi-directional branched HEMs containing octaphenylcyclotetrasiloxane (OCSi). The OCSi structure allows for the establishment of continuous OH conducting channels within the membrane while addressing the prevailing trade-off between ionic conductivity and size/mechanical stability. Thanks to the formation of fine microphase-separated morphologies, the quaternized poly(octaphenylcyclotetrasiloxane-terphenyl-piperidinium) (QPOCSi-TP-2) membrane has high conductivity (152.9 mS cm−1 at 80 °C), excellent mechanical stability (tensile strength of 76.5 MPa) and outstanding chemical stability (1500 h in 5 M NaOH at 80 °C). In H2/O2 cell tests at 80 °C, the peak power density of the QPOCSi-TP-2 membrane reaches 1.26 W cm−2. During 120 h of operation at 100 m A cm−2, the voltage degradation rate of the cell is 1.02 mV h−1.

Abstract Image

高性能燃料电池用多向支化结构聚芳基氢氧化铵微孔交换膜
氢氧交换膜(HEMs)是氢氧交换膜燃料电池(hemfc)中能量转换装置的重要材料。本研究详细介绍了一系列含有八苯基环四硅氧烷(OCSi)的多向分支hem。OCSi结构允许在膜内建立连续的OH -导电通道,同时解决了离子电导率和尺寸/机械稳定性之间的普遍权衡。由于形成了精细的微相分离形态,季铵盐化聚(八苯环四硅氧烷- terphenylpiperidinium) (QPOCSi-TP-2)膜具有高电导率(80℃时152.9 mS cm−1)、优异的机械稳定性(抗拉强度76.5 MPa)和优异的化学稳定性(80℃下5m NaOH中1500 h)。在80℃的H2/O2电池测试中,QPOCSi-TP-2膜的峰值功率密度达到1.26 W cm−2。在100 m A cm−2下工作120 h时,电池的电压降解率为1.02 mV h−1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信