Modelling multi-layer fine fuel loads in temperate eucalypt forests using airborne LiDAR and inventory data

IF 5.7 Q1 ENVIRONMENTAL SCIENCES
Trung H. Nguyen , Simon Jones , Karin J Reinke , Mariela Soto-Berelov
{"title":"Modelling multi-layer fine fuel loads in temperate eucalypt forests using airborne LiDAR and inventory data","authors":"Trung H. Nguyen ,&nbsp;Simon Jones ,&nbsp;Karin J Reinke ,&nbsp;Mariela Soto-Berelov","doi":"10.1016/j.srs.2025.100226","DOIUrl":null,"url":null,"abstract":"<div><div>Wildfires are increasing in intensity and frequency due to climate change and land-use changes, posing critical threats to ecosystems, economies, and human safety. Fine fuels (&lt;6 mm, such as leaves and twigs) are known key drivers of wildfire ignition and spread, particularly in temperate forests where high flammability increases wildfire hazard. Accurately quantifying fine fuel loads (FFL) across vertical forest layers is essential for understanding and predicting wildfire behaviour, yet past studies using Airborne Laser Scanning (ALS) have been limited to canopy fuels, overlooking surface and understorey layers that play a key role in wildfire propagation. This study addresses this gap by developing an ALS-based modelling approach to estimate FFL across four vertical layers: canopy, elevated (or ladder), near-surface, and surface. The study was conducted in eucalypt-dominated forests in Victoria, southeastern Australia. We stratified ALS point clouds into distinct layers (overstorey, intermediate, shrub, and herb), computed layer-specific structural metrics, and trained Random Forest models to predict multi-layer FFL. The models performed well, with the highest accuracy for canopy FFL (R<sup>2</sup> = 0.74, relative RMSE = 49.42 %) and moderate accuracy for elevated, near-surface, and surface FFL (R<sup>2</sup> = 0.42–0.56, relative RMSE = 59.77–77.57 %). Model interpretation revealed that integrating ALS metrics from multiple forest layers maximised accuracy and highlighted the complex role of vertical forest structure in predicting FFL. Prediction maps captured horizontal and vertical FFL variations across landscapes, reflecting differences in forest structure. Furthermore, pre-fire FFL, especially in surface and canopy layers, showed statistically significant associations with wildfire-induced forest loss. This study advances multi-layer FFL estimation using ALS data, offering a more comprehensive fuel information for wildfire hazard assessment and forest management. Future research should explore the scalability of this method by integrating satellite-derived data to extend FFL mapping at broader spatial scales.</div></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"11 ","pages":"Article 100226"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266601722500032X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Wildfires are increasing in intensity and frequency due to climate change and land-use changes, posing critical threats to ecosystems, economies, and human safety. Fine fuels (<6 mm, such as leaves and twigs) are known key drivers of wildfire ignition and spread, particularly in temperate forests where high flammability increases wildfire hazard. Accurately quantifying fine fuel loads (FFL) across vertical forest layers is essential for understanding and predicting wildfire behaviour, yet past studies using Airborne Laser Scanning (ALS) have been limited to canopy fuels, overlooking surface and understorey layers that play a key role in wildfire propagation. This study addresses this gap by developing an ALS-based modelling approach to estimate FFL across four vertical layers: canopy, elevated (or ladder), near-surface, and surface. The study was conducted in eucalypt-dominated forests in Victoria, southeastern Australia. We stratified ALS point clouds into distinct layers (overstorey, intermediate, shrub, and herb), computed layer-specific structural metrics, and trained Random Forest models to predict multi-layer FFL. The models performed well, with the highest accuracy for canopy FFL (R2 = 0.74, relative RMSE = 49.42 %) and moderate accuracy for elevated, near-surface, and surface FFL (R2 = 0.42–0.56, relative RMSE = 59.77–77.57 %). Model interpretation revealed that integrating ALS metrics from multiple forest layers maximised accuracy and highlighted the complex role of vertical forest structure in predicting FFL. Prediction maps captured horizontal and vertical FFL variations across landscapes, reflecting differences in forest structure. Furthermore, pre-fire FFL, especially in surface and canopy layers, showed statistically significant associations with wildfire-induced forest loss. This study advances multi-layer FFL estimation using ALS data, offering a more comprehensive fuel information for wildfire hazard assessment and forest management. Future research should explore the scalability of this method by integrating satellite-derived data to extend FFL mapping at broader spatial scales.
利用机载激光雷达和库存数据对温带桉树林中多层精细燃料负载进行建模
由于气候变化和土地利用变化,野火的强度和频率正在增加,对生态系统、经济和人类安全构成严重威胁。细燃料(6毫米厚,如树叶和树枝)是已知的野火着火和蔓延的关键驱动因素,特别是在温带森林中,高可燃性增加了野火的危险。准确量化垂直森林层的精细燃料负荷(FFL)对于理解和预测野火行为至关重要,但过去使用机载激光扫描(ALS)的研究仅限于树冠燃料,忽略了在野火传播中起关键作用的地表和下层。本研究通过开发基于als的建模方法来估计四个垂直层(冠层、高架层(或阶梯层)、近地表层和地表层)的FFL,从而解决了这一差距。这项研究是在澳大利亚东南部维多利亚州以桉树为主的森林中进行的。我们将ALS点云分层为不同的层(上层、中层、灌木和草本),计算特定层的结构指标,并训练随机森林模型来预测多层FFL。结果表明,模型对冠层FFL的精度最高(R2 = 0.74,相对RMSE = 49.42%),对高架、近地表和地表FFL的精度中等(R2 = 0.42 ~ 0.56,相对RMSE = 59.77 ~ 77.57%)。模型解释表明,整合来自多个森林层的ALS指标可以最大限度地提高准确性,并突出了垂直森林结构在预测FFL中的复杂作用。预测图捕捉了不同景观的水平和垂直FFL变化,反映了森林结构的差异。此外,火灾前的FFL,特别是地表和冠层的FFL,与野火引起的森林损失有显著的统计学意义。本研究提出了基于ALS数据的多层FFL估算方法,为野火危害评估和森林管理提供了更全面的燃料信息。未来的研究应该通过整合卫星数据来探索这种方法的可扩展性,从而在更广泛的空间尺度上扩展FFL制图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信