Yong Mi , Hongmei Chen , Zhong Yuan , Chuan Luo , Shi-Jinn Horng , Tianrui Li
{"title":"Nonnegative graph embedding induced unsupervised feature selection","authors":"Yong Mi , Hongmei Chen , Zhong Yuan , Chuan Luo , Shi-Jinn Horng , Tianrui Li","doi":"10.1016/j.eswa.2025.127664","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, many unsupervised feature selection (UFS) methods have been developed due to their effectiveness in selecting valuable features to improve and accelerate the subsequent learning tasks. However, most existing UFS methods suffer from the following three drawbacks: (1) They usually ignore the nonnegative attribute of feature when conducting feature selection, which inevitably loses partial information; (2) Most adopt a separate strategy to rank all features and then select the first <span><math><mi>k</mi></math></span> features, which introduces an additional parameter and often obtains suboptimal results; (3) Most generally confront the problem of high time-consuming. To tackle the previously mentioned shortage, we present a novel UFS method, <em>i</em>.<em>e</em>., Nonnegative Graph Embedding Induced Unsupervised Feature Selection, which considers nonnegative feature attributes and selects informative feature subsets in a one-step way. Specifically, the raw data are projected into a low-dimensional subspace, where the learned low-dimensional representation keeps a nonnegative attribute. Then, a novel scheme is designed to preserve the local geometric structure of the original data, and <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>0</mn></mrow></msub></math></span> norm is introduced to guide feature selection without ranking and selecting processes. Finally, we design a high-efficiency solution strategy with low computational complexity, and experiments on real-life datasets verify the efficiency and advancement compared with advanced UFS methods.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"282 ","pages":"Article 127664"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425012862","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, many unsupervised feature selection (UFS) methods have been developed due to their effectiveness in selecting valuable features to improve and accelerate the subsequent learning tasks. However, most existing UFS methods suffer from the following three drawbacks: (1) They usually ignore the nonnegative attribute of feature when conducting feature selection, which inevitably loses partial information; (2) Most adopt a separate strategy to rank all features and then select the first features, which introduces an additional parameter and often obtains suboptimal results; (3) Most generally confront the problem of high time-consuming. To tackle the previously mentioned shortage, we present a novel UFS method, i.e., Nonnegative Graph Embedding Induced Unsupervised Feature Selection, which considers nonnegative feature attributes and selects informative feature subsets in a one-step way. Specifically, the raw data are projected into a low-dimensional subspace, where the learned low-dimensional representation keeps a nonnegative attribute. Then, a novel scheme is designed to preserve the local geometric structure of the original data, and norm is introduced to guide feature selection without ranking and selecting processes. Finally, we design a high-efficiency solution strategy with low computational complexity, and experiments on real-life datasets verify the efficiency and advancement compared with advanced UFS methods.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.