Clustering digital mental health perceptions using transformer-based models

Ayodeji O.J. Ibitoye , Oladosu O. Oladimeji , Oluwaseyi F. Afe
{"title":"Clustering digital mental health perceptions using transformer-based models","authors":"Ayodeji O.J. Ibitoye ,&nbsp;Oladosu O. Oladimeji ,&nbsp;Oluwaseyi F. Afe","doi":"10.1016/j.fraope.2025.100262","DOIUrl":null,"url":null,"abstract":"<div><div>The rise in online mental health discussions underscores the need to understand diverse perspectives to inform targeted interventions. Addressing the granularity of existing research on mapping such perspectives, this study proposes a model combining contextual and sentiment analysis, keyword scoring, and clustering techniques to identify themes in online comments. Using transformer-based models (BERT, ALBERT, ELECTRA), the study achieved high-quality clustering of seven distinct mental health perspectives: stigma, empowerment, treatment approaches, recovery, social/environmental factors, advocacy, and cultural dimensions. ELECTRA outperformed others in clustering quality (silhouette score: 0.73; Davies-Bouldin Index: 0.34). The findings reveal cohesive, well-separated clusters that enhance understanding of digital mental health discourse. These insights provide a foundation for data-driven advocacy, tailored interventions, and broader awareness, addressing the complex dynamics of mental health narratives in online spaces. This study bridges a critical research gap by offering a systematic approach to analysing and interpreting mental health perspectives in digital environments.</div></div>","PeriodicalId":100554,"journal":{"name":"Franklin Open","volume":"11 ","pages":"Article 100262"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Franklin Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773186325000520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rise in online mental health discussions underscores the need to understand diverse perspectives to inform targeted interventions. Addressing the granularity of existing research on mapping such perspectives, this study proposes a model combining contextual and sentiment analysis, keyword scoring, and clustering techniques to identify themes in online comments. Using transformer-based models (BERT, ALBERT, ELECTRA), the study achieved high-quality clustering of seven distinct mental health perspectives: stigma, empowerment, treatment approaches, recovery, social/environmental factors, advocacy, and cultural dimensions. ELECTRA outperformed others in clustering quality (silhouette score: 0.73; Davies-Bouldin Index: 0.34). The findings reveal cohesive, well-separated clusters that enhance understanding of digital mental health discourse. These insights provide a foundation for data-driven advocacy, tailored interventions, and broader awareness, addressing the complex dynamics of mental health narratives in online spaces. This study bridges a critical research gap by offering a systematic approach to analysing and interpreting mental health perspectives in digital environments.
使用基于转换器的模型聚类数字心理健康感知
网上心理健康讨论的增加凸显了了解不同观点的必要性,从而为有针对性的干预措施提供依据。针对现有研究在绘制此类观点方面存在的细粒度问题,本研究提出了一种结合上下文和情感分析、关键词评分和聚类技术的模型,以识别在线评论中的主题。通过使用基于转换器的模型(BERT、ALBERT、ELECTRA),本研究对七种不同的心理健康观点进行了高质量的聚类:污名化、赋权、治疗方法、康复、社会/环境因素、倡导和文化维度。在聚类质量方面,ELECTRA 优于其他方法(剪影得分:0.73;戴维斯-博尔丁指数:0.34)。研究结果揭示了具有凝聚力的、分离良好的聚类,这些聚类增强了人们对数字心理健康话语的理解。这些见解为数据驱动的宣传、有针对性的干预和更广泛的认知提供了基础,解决了网络空间中心理健康叙事的复杂动态。本研究为分析和解释数字环境中的心理健康观点提供了一种系统的方法,从而填补了一项重要的研究空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信