Luca Bedogni, Marco Mamei, Marco Picone, Marcello Pietri, Franco Zambonelli
{"title":"Fluid Computing & Digital Twins for intelligent interoperability in the IoT ecosystem","authors":"Luca Bedogni, Marco Mamei, Marco Picone, Marcello Pietri, Franco Zambonelli","doi":"10.1016/j.future.2025.107855","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of physical and digital systems is fundamental to enabling intelligent, adaptive, and scalable solutions in modern IoT environments. This paper explores Fluid Digital Twins (FDTs), a novel framework combining Fluid Computing (FC) principles with Digital Twin (DT) technology, to address challenges related to interoperability, dynamic functionality, and adaptability in IoT ecosystems. FC introduces a paradigm shift, enabling seamless data and computational task flow across heterogeneous environments, dynamically adjusting to resource availability and system needs. This paper focuses on embedding intelligence within FDTs to enhance interoperability and enable IoT applications to adapt to changes across both physical and digital domains. By integrating intelligent interoperability mechanisms, FDTs ensure smooth data alignment and compatibility across platforms, adapting to both physical and digital changes. The proposed framework has been implemented, prototyped, and evaluated in the Modena Automotive Smart Area (MASA), a smart city testbed. The evaluation demonstrates FDTs’ ability to enhance smart mobility, optimize transportation systems, and provide actionable insights, highlighting their transformative potential in dynamic, data-rich environments. The results emphasize the practical applicability of FDTs in addressing real-world challenges and advancing the capabilities of IoT-driven smart cities.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"171 ","pages":"Article 107855"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25001505","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of physical and digital systems is fundamental to enabling intelligent, adaptive, and scalable solutions in modern IoT environments. This paper explores Fluid Digital Twins (FDTs), a novel framework combining Fluid Computing (FC) principles with Digital Twin (DT) technology, to address challenges related to interoperability, dynamic functionality, and adaptability in IoT ecosystems. FC introduces a paradigm shift, enabling seamless data and computational task flow across heterogeneous environments, dynamically adjusting to resource availability and system needs. This paper focuses on embedding intelligence within FDTs to enhance interoperability and enable IoT applications to adapt to changes across both physical and digital domains. By integrating intelligent interoperability mechanisms, FDTs ensure smooth data alignment and compatibility across platforms, adapting to both physical and digital changes. The proposed framework has been implemented, prototyped, and evaluated in the Modena Automotive Smart Area (MASA), a smart city testbed. The evaluation demonstrates FDTs’ ability to enhance smart mobility, optimize transportation systems, and provide actionable insights, highlighting their transformative potential in dynamic, data-rich environments. The results emphasize the practical applicability of FDTs in addressing real-world challenges and advancing the capabilities of IoT-driven smart cities.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.