HIP-RRTMG_SW: Accelerating a shortwave radiative transfer scheme under the heterogeneous-compute interface for portability (HIP) framework

IF 3.4 3区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Zhenzhen Wang , Yuzhu Wang , Fei Li , Jinrong Jiang , Xiaocong Wang
{"title":"HIP-RRTMG_SW: Accelerating a shortwave radiative transfer scheme under the heterogeneous-compute interface for portability (HIP) framework","authors":"Zhenzhen Wang ,&nbsp;Yuzhu Wang ,&nbsp;Fei Li ,&nbsp;Jinrong Jiang ,&nbsp;Xiaocong Wang","doi":"10.1016/j.jpdc.2025.105094","DOIUrl":null,"url":null,"abstract":"<div><div>With the development of higher-resolution atmospheric circulation models, the amount of calculation increases polynomially with resolution, and the calculation accuracy of physical processes is increasing rapidly. The traditional parallel computing methods based on multi-core CPUs can no longer meet the requirements of high efficiency and real-time computing performance of climate models. In order to improve the computational efficiency and scalability of the Atmospheric General Circulation Model, it is urgent to study efficient parallel algorithms and performance optimization methods for radiation physical process with massive calculations. In this paper, a heterogeneous multidimensional acceleration algorithm is proposed for the shortwave radiation transfer model (RRTMG_SW) based on HIP. Then, the HIP version of RRTMG_SW is developed, namely HIP-RRTMG_SW. In addition, combined with the “MPI + HIP” hybrid programming model, a multi-GPU implementation of RRTMG_SW is also proposed, and it makes full use of the multi-node, multi-core CPU and multi-GPU computing capability of a heterogeneous high performance computing system. Experimental results show that HIP-RRTMG_SW achieves 7.05× of acceleration in the climate simulation with 0.25<sup>∘</sup> resolution using 16 AMD GPUs on the ORISE supercomputer compared with RRTMG_SW using 128 CPU cores. When using 1024 AMD GPUs, HIP-RRTMG_SW is 83.94× faster than RRTMG_SW with 128 CPU cores, indicating that the proposed multi-GPU acceleration algorithm has strong scalability.</div></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"202 ","pages":"Article 105094"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731525000619","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of higher-resolution atmospheric circulation models, the amount of calculation increases polynomially with resolution, and the calculation accuracy of physical processes is increasing rapidly. The traditional parallel computing methods based on multi-core CPUs can no longer meet the requirements of high efficiency and real-time computing performance of climate models. In order to improve the computational efficiency and scalability of the Atmospheric General Circulation Model, it is urgent to study efficient parallel algorithms and performance optimization methods for radiation physical process with massive calculations. In this paper, a heterogeneous multidimensional acceleration algorithm is proposed for the shortwave radiation transfer model (RRTMG_SW) based on HIP. Then, the HIP version of RRTMG_SW is developed, namely HIP-RRTMG_SW. In addition, combined with the “MPI + HIP” hybrid programming model, a multi-GPU implementation of RRTMG_SW is also proposed, and it makes full use of the multi-node, multi-core CPU and multi-GPU computing capability of a heterogeneous high performance computing system. Experimental results show that HIP-RRTMG_SW achieves 7.05× of acceleration in the climate simulation with 0.25 resolution using 16 AMD GPUs on the ORISE supercomputer compared with RRTMG_SW using 128 CPU cores. When using 1024 AMD GPUs, HIP-RRTMG_SW is 83.94× faster than RRTMG_SW with 128 CPU cores, indicating that the proposed multi-GPU acceleration algorithm has strong scalability.
HIP- rrtmg_sw:在异构计算接口移植性(HIP)框架下加速短波辐射传输方案
随着高分辨率大气环流模式的发展,计算量随分辨率呈多项式增长,物理过程的计算精度迅速提高。传统的基于多核cpu的并行计算方法已不能满足气候模型对高效、实时计算性能的要求。为了提高大气环流模式的计算效率和可扩展性,迫切需要研究大规模计算辐射物理过程的高效并行算法和性能优化方法。针对基于HIP的短波辐射传输模型(RRTMG_SW),提出了一种异构多维加速算法。然后,开发了RRTMG_SW的HIP版本,即HIP-RRTMG_SW。此外,结合“MPI + HIP”混合编程模型,提出了RRTMG_SW的多gpu实现方案,充分利用了异构高性能计算系统的多节点、多核CPU和多gpu计算能力。实验结果表明,与使用128个CPU核的RRTMG_SW相比,在使用16个AMD gpu的ORISE超级计算机上,在0.25°分辨率的气候模拟中,该算法的加速度提高了7.05倍。在使用1024 AMD gpu时,比128 CPU核的RRTMG_SW快83.94倍,表明本文提出的多gpu加速算法具有较强的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Parallel and Distributed Computing
Journal of Parallel and Distributed Computing 工程技术-计算机:理论方法
CiteScore
10.30
自引率
2.60%
发文量
172
审稿时长
12 months
期刊介绍: This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing. The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信