Ruyin Liu , Zongjin Yue , Jia'an Dong , Cheng Zhang , Chuanghao Guo , Xinli Wang
{"title":"Lupeol mitigates spinal cord injury by modulating microglial M1/M2 polarization via Na+/K+-ATPase-mediated mitophagy","authors":"Ruyin Liu , Zongjin Yue , Jia'an Dong , Cheng Zhang , Chuanghao Guo , Xinli Wang","doi":"10.1016/j.cellimm.2025.104955","DOIUrl":null,"url":null,"abstract":"<div><div>Spinal cord injury (SCI) often results in severe disability or even death, with inflammation playing a critical role in hindering recovery. Although Lupeol is known for its potent anti-inflammatory properties, its specific role in SCI-induced inflammation remains underexplored. In this study, an in vitro inflammation model was established using LPS-stimulated BV2 microglia. Lupeol treatment effectively counteracted LPS-induced reductions in Na<sup>+</sup>/K<sup>+</sup>-ATPase (NKA) activity, suppression of mitophagy, M1 polarization of microglia, release of inflammatory factors, and increased pyroptosis. Mechanistically, Lupeol alleviated microglial inflammation by enhancing mitophagy through the activation of NKA activity. Furthermore, Lupeol upregulated NKA activity and mitophagy by activating the AMPKα2-mTOR-TFEB pathway. In vivo, a mouse model of SCI was established, and Lupeol was administered daily via intraperitoneal injection. Lupeol treatment significantly reduced neuronal loss, promoted microglial polarization from the M1 to the M2 phenotype, attenuated inflammation, and improved motor function recovery in SCI mice. In conclusion, Lupeol promotes mitophagy by enhancing NKA activity via the AMPK–mTOR–TFEB pathway, thereby suppressing the pro-inflammatory phenotype of microglia and mitigating SCI progression.</div></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"411 ","pages":"Article 104955"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008874925000401","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spinal cord injury (SCI) often results in severe disability or even death, with inflammation playing a critical role in hindering recovery. Although Lupeol is known for its potent anti-inflammatory properties, its specific role in SCI-induced inflammation remains underexplored. In this study, an in vitro inflammation model was established using LPS-stimulated BV2 microglia. Lupeol treatment effectively counteracted LPS-induced reductions in Na+/K+-ATPase (NKA) activity, suppression of mitophagy, M1 polarization of microglia, release of inflammatory factors, and increased pyroptosis. Mechanistically, Lupeol alleviated microglial inflammation by enhancing mitophagy through the activation of NKA activity. Furthermore, Lupeol upregulated NKA activity and mitophagy by activating the AMPKα2-mTOR-TFEB pathway. In vivo, a mouse model of SCI was established, and Lupeol was administered daily via intraperitoneal injection. Lupeol treatment significantly reduced neuronal loss, promoted microglial polarization from the M1 to the M2 phenotype, attenuated inflammation, and improved motor function recovery in SCI mice. In conclusion, Lupeol promotes mitophagy by enhancing NKA activity via the AMPK–mTOR–TFEB pathway, thereby suppressing the pro-inflammatory phenotype of microglia and mitigating SCI progression.
期刊介绍:
Cellular Immunology publishes original investigations concerned with the immunological activities of cells in experimental or clinical situations. The scope of the journal encompasses the broad area of in vitro and in vivo studies of cellular immune responses. Purely clinical descriptive studies are not considered.
Research Areas include:
• Antigen receptor sites
• Autoimmunity
• Delayed-type hypersensitivity or cellular immunity
• Immunologic deficiency states and their reconstitution
• Immunologic surveillance and tumor immunity
• Immunomodulation
• Immunotherapy
• Lymphokines and cytokines
• Nonantibody immunity
• Parasite immunology
• Resistance to intracellular microbial and viral infection
• Thymus and lymphocyte immunobiology
• Transplantation immunology
• Tumor immunity.