Synergistic Artificial Intelligence framework for robust multivariate medium-term wind power prediction with uncertainty envelopes

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Bo Wu , Xiuli Wang , Bangyan Wang , Yaohong Xie , Shixiong Qi , Wenduo Sun , Qihang Huang , Xiang Ma
{"title":"Synergistic Artificial Intelligence framework for robust multivariate medium-term wind power prediction with uncertainty envelopes","authors":"Bo Wu ,&nbsp;Xiuli Wang ,&nbsp;Bangyan Wang ,&nbsp;Yaohong Xie ,&nbsp;Shixiong Qi ,&nbsp;Wenduo Sun ,&nbsp;Qihang Huang ,&nbsp;Xiang Ma","doi":"10.1016/j.egyai.2025.100513","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes an innovative framework for medium-term wind power forecasting, employing a robust, multi-module Artificial Intelligence approach to improve prediction accuracy and reliability over extended horizons. The framework consists of three key components: an internal–external learning process, a vertical–horizontal learning process, and a residual-based robust forecasting method. The internal–external process combines Variational Mode Decomposition with a stacked N-BEATS model, achieving stable and accurate forecasts across nearly 200 time steps. The vertical–horizontal process integrates the Polar Lights Optimizer with Joint Opposite Selection and a regression model based on the bidirectional long short-term memory and the gated recurrent unit, enabling efficient hyperparameter optimization and yielding a determination coefficient above 0.9996 for training data and a normalized root mean square error of 0.2448 for test data. We compared our proposed method with nine classical and state-of-the-art techniques and found that it delivers higher accuracy in medium-term prediction, extending to nearly 200 steps. The residual-based method addresses uncertainties by generating 95% confidence intervals, enhancing the model’s robustness in practical applications. By simulating real-world conditions, this framework provides reliable medium-term forecasts, making it an effective tool for renewable energy system dispatch and precise error control.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"20 ","pages":"Article 100513"},"PeriodicalIF":9.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266654682500045X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an innovative framework for medium-term wind power forecasting, employing a robust, multi-module Artificial Intelligence approach to improve prediction accuracy and reliability over extended horizons. The framework consists of three key components: an internal–external learning process, a vertical–horizontal learning process, and a residual-based robust forecasting method. The internal–external process combines Variational Mode Decomposition with a stacked N-BEATS model, achieving stable and accurate forecasts across nearly 200 time steps. The vertical–horizontal process integrates the Polar Lights Optimizer with Joint Opposite Selection and a regression model based on the bidirectional long short-term memory and the gated recurrent unit, enabling efficient hyperparameter optimization and yielding a determination coefficient above 0.9996 for training data and a normalized root mean square error of 0.2448 for test data. We compared our proposed method with nine classical and state-of-the-art techniques and found that it delivers higher accuracy in medium-term prediction, extending to nearly 200 steps. The residual-based method addresses uncertainties by generating 95% confidence intervals, enhancing the model’s robustness in practical applications. By simulating real-world conditions, this framework provides reliable medium-term forecasts, making it an effective tool for renewable energy system dispatch and precise error control.

Abstract Image

具有不确定性的多变量中期风电预测的协同人工智能框架
本文提出了一个创新的中期风电预测框架,采用鲁棒的多模块人工智能方法来提高预测的准确性和可靠性。该框架由三个关键部分组成:内部-外部学习过程、垂直-水平学习过程和基于残差的鲁棒预测方法。内部-外部过程结合变分模态分解和堆叠N-BEATS模型,在近200个时间步长内实现稳定和准确的预测。垂直水平过程集成了Polar Lights Optimizer与Joint Opposite Selection、基于双向长短期记忆和门控循环单元的回归模型,实现了高效的超参数优化,训练数据的决定系数高于0.9996,测试数据的归一化均方根误差为0.2448。我们将所提出的方法与九种经典和最先进的技术进行了比较,发现它在中期预测中具有更高的准确性,可以扩展到近200步。基于残差的方法通过产生95%的置信区间来解决不确定性,增强了模型在实际应用中的鲁棒性。该框架通过模拟现实条件,提供了可靠的中期预测,是可再生能源系统调度和精确误差控制的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信