Two curious strongly invertible L-space knots

IF 1.5 1区 数学 Q1 MATHEMATICS
Kenneth L. Baker , Marc Kegel , Duncan McCoy
{"title":"Two curious strongly invertible L-space knots","authors":"Kenneth L. Baker ,&nbsp;Marc Kegel ,&nbsp;Duncan McCoy","doi":"10.1016/j.aim.2025.110287","DOIUrl":null,"url":null,"abstract":"<div><div>We present two examples of strongly invertible L-space knots whose surgeries are never the double branched cover of a Khovanov thin link in the 3-sphere. Consequently, these knots provide counterexamples to a conjectural characterization of strongly invertible L-space knots due to Watson. We also discuss other exceptional properties of these two knots, for example, these two L-space knots have formal semigroups that are actual semigroups.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"473 ","pages":"Article 110287"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001859","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present two examples of strongly invertible L-space knots whose surgeries are never the double branched cover of a Khovanov thin link in the 3-sphere. Consequently, these knots provide counterexamples to a conjectural characterization of strongly invertible L-space knots due to Watson. We also discuss other exceptional properties of these two knots, for example, these two L-space knots have formal semigroups that are actual semigroups.
两个奇怪的强可逆l空间结
我们给出了两个强可逆l空间结的例子,它们的手术从来不是3球中Khovanov细连杆的双分支覆盖。因此,这些结提供了反例,以推测强可逆的l空间结的特征,由于沃森。我们还讨论了这两个结的其他特殊性质,例如,这两个l空间结有形式半群,它们是实际的半群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信