Wanting Jia , Shubao Song , Lin Zhang , Cheng Wang , Pavel Krivosheyev , Dongping Chen , Jiankun Shao
{"title":"Ignition delay time and methane time history in hydrogen-natural gas surrogate blends: A shock tube study","authors":"Wanting Jia , Shubao Song , Lin Zhang , Cheng Wang , Pavel Krivosheyev , Dongping Chen , Jiankun Shao","doi":"10.1016/j.combustflame.2025.114191","DOIUrl":null,"url":null,"abstract":"<div><div>The pipeline transportation of hydrogen-blended natural gas offers an efficient large-scale solution while introducing new safety and technical challenges. This study investigates the combustion characteristics of hydrogen-natural gas blends, using pure methane and a 1% C<sub>3</sub>H<sub>8</sub>/99% CH<sub>4</sub> mixture as natural gas surrogates. Ignition delay times and methane time histories were measured in a shock tube for hydrogen–natural gas surrogate blends containing 10 %, 20 % and 30 % hydrogen (by mole fraction of the fuel component) at 1305–1729 K, 1 atm, and equivalence ratios of 0.5, 1.0 and 2.0. High-precision in-situ methane concentration data were obtained using 3175 nm laser absorption diagnostics. The results indicate that hydrogen addition significantly enhances methane consumption rate and overall reactivity. The Aramco Mech 3.0, NUIG Mech 1.3, FFCM-2, USC Mech Ⅱ and GRI Mech 3.0 kinetic models were evaluated against the present experimental data. The rate constants of three key reactions in the Aramco Mech 3.0, NUIG Mech 1.3, and FFCM-2 kinetic models were revised, resulting in simulation results that show improved agreement with the experimental data for ignition delay times and methane time histories. This study provides both experimental and modeling studies on the combustion characteristics of hydrogen-natural gas blends, contributing to the safe transportation and utilization of hydrogen.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"277 ","pages":"Article 114191"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218025002299","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The pipeline transportation of hydrogen-blended natural gas offers an efficient large-scale solution while introducing new safety and technical challenges. This study investigates the combustion characteristics of hydrogen-natural gas blends, using pure methane and a 1% C3H8/99% CH4 mixture as natural gas surrogates. Ignition delay times and methane time histories were measured in a shock tube for hydrogen–natural gas surrogate blends containing 10 %, 20 % and 30 % hydrogen (by mole fraction of the fuel component) at 1305–1729 K, 1 atm, and equivalence ratios of 0.5, 1.0 and 2.0. High-precision in-situ methane concentration data were obtained using 3175 nm laser absorption diagnostics. The results indicate that hydrogen addition significantly enhances methane consumption rate and overall reactivity. The Aramco Mech 3.0, NUIG Mech 1.3, FFCM-2, USC Mech Ⅱ and GRI Mech 3.0 kinetic models were evaluated against the present experimental data. The rate constants of three key reactions in the Aramco Mech 3.0, NUIG Mech 1.3, and FFCM-2 kinetic models were revised, resulting in simulation results that show improved agreement with the experimental data for ignition delay times and methane time histories. This study provides both experimental and modeling studies on the combustion characteristics of hydrogen-natural gas blends, contributing to the safe transportation and utilization of hydrogen.
期刊介绍:
The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on:
Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including:
Conventional, alternative and surrogate fuels;
Pollutants;
Particulate and aerosol formation and abatement;
Heterogeneous processes.
Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including:
Premixed and non-premixed flames;
Ignition and extinction phenomena;
Flame propagation;
Flame structure;
Instabilities and swirl;
Flame spread;
Multi-phase reactants.
Advances in diagnostic and computational methods in combustion, including:
Measurement and simulation of scalar and vector properties;
Novel techniques;
State-of-the art applications.
Fundamental investigations of combustion technologies and systems, including:
Internal combustion engines;
Gas turbines;
Small- and large-scale stationary combustion and power generation;
Catalytic combustion;
Combustion synthesis;
Combustion under extreme conditions;
New concepts.