Parallel Algebraic Multigrid Solvers for Composite Discontinuous Galerkin Discretization of the Cardiac EMI Model in Heterogeneous Media

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Edoardo Centofanti , Ngoc Mai Monica Huynh , Luca F. Pavarino , Simone Scacchi
{"title":"Parallel Algebraic Multigrid Solvers for Composite Discontinuous Galerkin Discretization of the Cardiac EMI Model in Heterogeneous Media","authors":"Edoardo Centofanti ,&nbsp;Ngoc Mai Monica Huynh ,&nbsp;Luca F. Pavarino ,&nbsp;Simone Scacchi","doi":"10.1016/j.cma.2025.118001","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we develop and numerically study algebraic multigrid (AMG) preconditioners for the cardiac EMI (Extracellular space, cell Membrane, and Intracellular space) model, a recent and biophysically detailed framework for cardiac electrophysiology. The EMI model addresses the limitations of traditional homogenized cardiac models and leverages contemporary computational power to enable high-resolution simulations at the cellular scale. Using a composite Discontinuous Galerkin (DG) discretization, we introduce an AMG-EMI solver for the three dimensional EMI model. Our investigation includes the AMG-EMI scalability performance, both weak and strong, and evaluates its numerical robustness under ischemic conditions, addressing the challenges of heterogeneous media. Numerical tests exploit state-of-the-art pre-exascale supercomputers with hybrid CPU–GPU architectures. The results indicate better scalability performance of the AMG-EMI solver on CPUs compared to GPUs. However, the best solution times achieved using GPUs are up to 40x faster than those obtained on CPUs.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"442 ","pages":"Article 118001"},"PeriodicalIF":6.9000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525002737","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop and numerically study algebraic multigrid (AMG) preconditioners for the cardiac EMI (Extracellular space, cell Membrane, and Intracellular space) model, a recent and biophysically detailed framework for cardiac electrophysiology. The EMI model addresses the limitations of traditional homogenized cardiac models and leverages contemporary computational power to enable high-resolution simulations at the cellular scale. Using a composite Discontinuous Galerkin (DG) discretization, we introduce an AMG-EMI solver for the three dimensional EMI model. Our investigation includes the AMG-EMI scalability performance, both weak and strong, and evaluates its numerical robustness under ischemic conditions, addressing the challenges of heterogeneous media. Numerical tests exploit state-of-the-art pre-exascale supercomputers with hybrid CPU–GPU architectures. The results indicate better scalability performance of the AMG-EMI solver on CPUs compared to GPUs. However, the best solution times achieved using GPUs are up to 40x faster than those obtained on CPUs.
异质介质中心脏电磁干扰模型复合不连续伽辽金离散化的并行代数多网格求解方法
在本文中,我们开发并数值研究了心脏EMI(细胞外空间,细胞膜和细胞内空间)模型的代数多网格(AMG)预调节器,这是心脏电生理学的最新生物物理详细框架。EMI模型解决了传统均质心脏模型的局限性,并利用现代计算能力实现细胞尺度的高分辨率模拟。采用复合不连续伽辽金离散方法,引入了三维电磁干扰模型的AMG-EMI求解器。我们的研究包括AMG-EMI的可扩展性性能,包括弱和强,并评估其在缺血条件下的数值鲁棒性,解决了异构介质的挑战。数值测试利用具有混合CPU-GPU架构的最先进的百亿亿次超级计算机。结果表明,与gpu相比,AMG-EMI求解器在cpu上具有更好的可扩展性。然而,使用gpu获得的最佳解决方案时间比使用cpu获得的时间快40倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信