Alessio d'Acapito , Alice Decombe , Charles-Adrien Arnaud, Cécile Breyton
{"title":"Comparative anatomy of siphophage tails before and after interaction with their receptor","authors":"Alessio d'Acapito , Alice Decombe , Charles-Adrien Arnaud, Cécile Breyton","doi":"10.1016/j.sbi.2025.103045","DOIUrl":null,"url":null,"abstract":"<div><div>Siphophages are tailed bacteriophages characterised by their long noncontractile tails. In this review, we compare the recent electron cryo-microscopy structures of eight siphophage tails. We confirm and extend common building block organisation within the siphophage tails, particularly within the tail tip. Moreover, the description of the structure of siphophages T5 and λ tail after receptor binding, showing conformational changes only in the tail tip, explains how the siphophage tail opens, leading to DNA ejection. Conserved structural elements point to a general mechanism of infection for Gram-negative-infecting siphophages and allow considerations regarding the classification of the receptor-binding proteins into two different categories: host recognition receptors and membrane sensing receptors that trigger DNA ejection.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"92 ","pages":"Article 103045"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25000636","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Siphophages are tailed bacteriophages characterised by their long noncontractile tails. In this review, we compare the recent electron cryo-microscopy structures of eight siphophage tails. We confirm and extend common building block organisation within the siphophage tails, particularly within the tail tip. Moreover, the description of the structure of siphophages T5 and λ tail after receptor binding, showing conformational changes only in the tail tip, explains how the siphophage tail opens, leading to DNA ejection. Conserved structural elements point to a general mechanism of infection for Gram-negative-infecting siphophages and allow considerations regarding the classification of the receptor-binding proteins into two different categories: host recognition receptors and membrane sensing receptors that trigger DNA ejection.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation