Indicator functions detect tangentially transient behaviour on decaying normally hyperbolic invariant manifolds

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Francisco Gonzalez Montoya , Christof Jung
{"title":"Indicator functions detect tangentially transient behaviour on decaying normally hyperbolic invariant manifolds","authors":"Francisco Gonzalez Montoya ,&nbsp;Christof Jung","doi":"10.1016/j.physd.2025.134686","DOIUrl":null,"url":null,"abstract":"<div><div>We study the decay scenario of a codimension-2 NHIM in a three-degrees-of-freedom Hamiltonian system under increasing perturbation when the NHIM loses its normal hyperbolicity. On one hand, we follow this decay in the Poincaré map for the internal dynamics of the NHIM. On the other hand, we also follow the decay in a time delay function calculated on a 2-dimensional plane in the phase space of the system. In addition, we observe the role of tangential transient effects on the decaying NHIM and their manifestation in the delay time indicator function. We obtain ideas on how the decay of NHIMs and the tangential transient effects are encoded in indicator functions. As an example of demonstration, we use the motion of an electron in a perturbed magnetic dipole field.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"476 ","pages":"Article 134686"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925001642","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study the decay scenario of a codimension-2 NHIM in a three-degrees-of-freedom Hamiltonian system under increasing perturbation when the NHIM loses its normal hyperbolicity. On one hand, we follow this decay in the Poincaré map for the internal dynamics of the NHIM. On the other hand, we also follow the decay in a time delay function calculated on a 2-dimensional plane in the phase space of the system. In addition, we observe the role of tangential transient effects on the decaying NHIM and their manifestation in the delay time indicator function. We obtain ideas on how the decay of NHIMs and the tangential transient effects are encoded in indicator functions. As an example of demonstration, we use the motion of an electron in a perturbed magnetic dipole field.
指标函数检测衰变常双曲不变流形上的切向瞬变行为
本文研究了三自由度哈密顿系统中co维-2 NHIM在增加扰动下失去其正双曲度时的衰减情形。一方面,我们在庞加莱图中追踪NHIM内部动力学的衰减。另一方面,我们也跟踪了系统相空间中二维平面上计算的时滞函数的衰减。此外,我们还观察了切向瞬态效应对衰减NHIM的作用及其在延迟时间指示函数中的表现。我们得到了如何在指示函数中编码NHIMs的衰减和切向瞬态效应的想法。作为演示的一个例子,我们使用电子在扰动磁偶极子场中的运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信