PEGylated Fe3O4@Ti3C2 MXene quantum dots for in vitro photothermal cancer therapy

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Khuram Shahzad , Muhammad Ali Abbasi , Sadaf Mushtaq , Muhammad Farzik Ijaz , Denis V. Danilov , Nageen Naz , Anna Pestereva , Muhammad Zaman , Naseeb Ahmad , Anna Orlova
{"title":"PEGylated Fe3O4@Ti3C2 MXene quantum dots for in vitro photothermal cancer therapy","authors":"Khuram Shahzad ,&nbsp;Muhammad Ali Abbasi ,&nbsp;Sadaf Mushtaq ,&nbsp;Muhammad Farzik Ijaz ,&nbsp;Denis V. Danilov ,&nbsp;Nageen Naz ,&nbsp;Anna Pestereva ,&nbsp;Muhammad Zaman ,&nbsp;Naseeb Ahmad ,&nbsp;Anna Orlova","doi":"10.1016/j.matchemphys.2025.130888","DOIUrl":null,"url":null,"abstract":"<div><div>The combination of nanotechnology and biomedicine has led to transformative advancements in medical science, particularly in the field of Photothermal Therapy (PTT) for anticancer treatment. Current study presents Iron oxide nanoparticles Fe<sub>3</sub>O<sub>4</sub> integrated with Ti<sub>3</sub>C<sub>2</sub> MXene quantum dots (MQDs) as an efficient system for the anticancer PTT treatment. Core-shell Fe<sub>3</sub>O<sub>4</sub>@MQDs nanocomposites were synthesized using chemical methods, and then coated with Polyethylene Glycol (PEG) to enhance their colloidal stability and biocompatibility. The physicochemical and morphological properties of Fe<sub>3</sub>O<sub>4</sub>@MQDs-PEG were investigated by X-rays diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), and transmission electron microscopy (TEM). The Fe<sub>3</sub>O<sub>4</sub>@MQDs-PEG nanocomposites achieved notable photothermal conversion efficiency (ղ) of up to 37.7 % within 10 min when exposed to an 808 nm NIR laser. Potential for PTT was determined <em>in vitro</em> using HepG2 cells, where a dose and NIR dependent (808 nm for 8 min) cytotoxic response was achieved with an IC<sub>50</sub> value of 14.04 μg/ml. Also, hemolysis assay validated safety of Fe<sub>3</sub>O<sub>4</sub>@MQDs-PEG for intravenous applications. Overall, Fe<sub>3</sub>O<sub>4</sub>@MQDs-PEG represents a promising class of nanocomposites for photothermal therapeutic applications <em>in vitro</em>.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"341 ","pages":"Article 130888"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058425005346","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The combination of nanotechnology and biomedicine has led to transformative advancements in medical science, particularly in the field of Photothermal Therapy (PTT) for anticancer treatment. Current study presents Iron oxide nanoparticles Fe3O4 integrated with Ti3C2 MXene quantum dots (MQDs) as an efficient system for the anticancer PTT treatment. Core-shell Fe3O4@MQDs nanocomposites were synthesized using chemical methods, and then coated with Polyethylene Glycol (PEG) to enhance their colloidal stability and biocompatibility. The physicochemical and morphological properties of Fe3O4@MQDs-PEG were investigated by X-rays diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), and transmission electron microscopy (TEM). The Fe3O4@MQDs-PEG nanocomposites achieved notable photothermal conversion efficiency (ղ) of up to 37.7 % within 10 min when exposed to an 808 nm NIR laser. Potential for PTT was determined in vitro using HepG2 cells, where a dose and NIR dependent (808 nm for 8 min) cytotoxic response was achieved with an IC50 value of 14.04 μg/ml. Also, hemolysis assay validated safety of Fe3O4@MQDs-PEG for intravenous applications. Overall, Fe3O4@MQDs-PEG represents a promising class of nanocomposites for photothermal therapeutic applications in vitro.

Abstract Image

聚乙二醇化Fe3O4@Ti3C2 MXene量子点用于体外光热癌症治疗
纳米技术和生物医学的结合导致了医学的变革性进步,特别是在用于抗癌治疗的光热疗法(PTT)领域。目前的研究表明,氧化铁纳米颗粒Fe3O4与Ti3C2 MXene量子点(MQDs)集成是一种有效的抗癌PTT治疗系统。采用化学方法合成了核壳Fe3O4@MQDs纳米复合材料,并用聚乙二醇(PEG)包覆以提高其胶体稳定性和生物相容性。采用x射线衍射(XRD)、扫描电镜(SEM)、振动样品磁强计(VSM)和透射电镜(TEM)对Fe3O4@MQDs-PEG的理化性质和形貌进行了表征。Fe3O4@MQDs-PEG纳米复合材料在808 nm近红外激光照射下,10 min内光热转换效率可达37.7%。使用HepG2细胞体外测定PTT的潜力,在剂量和近红外依赖性(808 nm, 8 min)下实现细胞毒性反应,IC50值为14.04 μg/ml。此外,溶血试验验证了Fe3O4@MQDs-PEG静脉应用的安全性。总的来说,Fe3O4@MQDs-PEG代表了一类有前途的纳米复合材料光热治疗应用的体外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信