Speed of convergence and moderate deviations of FPP on random geometric graphs

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Lucas R. de Lima , Daniel Valesin
{"title":"Speed of convergence and moderate deviations of FPP on random geometric graphs","authors":"Lucas R. de Lima ,&nbsp;Daniel Valesin","doi":"10.1016/j.spa.2025.104652","DOIUrl":null,"url":null,"abstract":"<div><div>This study delves into first-passage percolation on random geometric graphs in the supercritical regime, where the graphs exhibit a unique infinite connected component. We investigate properties such as geodesic paths, moderate deviations, and fluctuations, aiming to establish a quantitative shape theorem. Furthermore, we examine fluctuations in geodesic paths and characterize the properties of spanning trees and their semi-infinite paths.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"187 ","pages":"Article 104652"},"PeriodicalIF":1.1000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925000936","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This study delves into first-passage percolation on random geometric graphs in the supercritical regime, where the graphs exhibit a unique infinite connected component. We investigate properties such as geodesic paths, moderate deviations, and fluctuations, aiming to establish a quantitative shape theorem. Furthermore, we examine fluctuations in geodesic paths and characterize the properties of spanning trees and their semi-infinite paths.
随机几何图上FPP的收敛速度和适度偏差
本文研究了超临界条件下随机几何图上的第一通道渗流问题,其中随机几何图表现出唯一的无限连通分量。我们研究了测地线路径、中等偏差和波动等性质,旨在建立一个定量形状定理。此外,我们研究了测地线路径的起伏,并描述了生成树及其半无限路径的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信