Mohamed Ben Alaya , Ahmed Kebaier , Gyula Pap , Ngoc Khue Tran
{"title":"Local asymptotic properties for the growth rate of a jump-type CIR process","authors":"Mohamed Ben Alaya , Ahmed Kebaier , Gyula Pap , Ngoc Khue Tran","doi":"10.1016/j.spa.2025.104664","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider a one-dimensional jump-type Cox–Ingersoll–Ross process driven by a Brownian motion and a subordinator, whose growth rate is an unknown parameter. Considering the process observed continuously or discretely at high frequency, we derive the local asymptotic properties for the growth rate in both ergodic and non-ergodic cases. Local asymptotic normality (LAN) is proved in the subcritical case, local asymptotic quadraticity (LAQ) is derived in the critical case, and local asymptotic mixed normality (LAMN) is shown in the supercritical case. To obtain these results, techniques of Malliavin calculus and a subtle analysis on the jump structure of the subordinator involving the amplitude of jumps and number of jumps are essentially used.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"187 ","pages":"Article 104664"},"PeriodicalIF":1.1000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030441492500105X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider a one-dimensional jump-type Cox–Ingersoll–Ross process driven by a Brownian motion and a subordinator, whose growth rate is an unknown parameter. Considering the process observed continuously or discretely at high frequency, we derive the local asymptotic properties for the growth rate in both ergodic and non-ergodic cases. Local asymptotic normality (LAN) is proved in the subcritical case, local asymptotic quadraticity (LAQ) is derived in the critical case, and local asymptotic mixed normality (LAMN) is shown in the supercritical case. To obtain these results, techniques of Malliavin calculus and a subtle analysis on the jump structure of the subordinator involving the amplitude of jumps and number of jumps are essentially used.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.