{"title":"Quantum dynamics as a pseudo-density matrix","authors":"James Fullwood","doi":"10.22331/q-2025-04-24-1719","DOIUrl":null,"url":null,"abstract":"While in relativity theory space evolves over time into a single entity known as spacetime, quantum theory lacks a standard notion of how to encapsulate the dynamical evolution of a quantum state into a single \"state over time\". Recently it was emphasized in the work of Fitzsimons, Jones and Vedral that if such a state over time is to encode not only spatial but also temporal correlations which exist within a quantum dynamical process, then it should be represented not by a density matrix, but rather, by a $\\textit{pseudo-density matrix}$. A pseudo-density matrix is a hermitian matrix of unit trace whose marginals are density matrices, and in this work, we make use a factorization system for quantum channels to associate a pseudo-density matrix with a quantum system which is to evolve according to a finite sequence of quantum channels. We then view such a pseudo-density matrix as the quantum analog of a local patch of spacetime, and we make an in-depth mathematical analysis of such quantum dynamical pseudo-density matrices and the properties they satisfy. We also show how to explicitly extract quantum dynamics from a given pseudo-density matrix, thus solving an open problem posed in the literature.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"53 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-04-24-1719","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
While in relativity theory space evolves over time into a single entity known as spacetime, quantum theory lacks a standard notion of how to encapsulate the dynamical evolution of a quantum state into a single "state over time". Recently it was emphasized in the work of Fitzsimons, Jones and Vedral that if such a state over time is to encode not only spatial but also temporal correlations which exist within a quantum dynamical process, then it should be represented not by a density matrix, but rather, by a $\textit{pseudo-density matrix}$. A pseudo-density matrix is a hermitian matrix of unit trace whose marginals are density matrices, and in this work, we make use a factorization system for quantum channels to associate a pseudo-density matrix with a quantum system which is to evolve according to a finite sequence of quantum channels. We then view such a pseudo-density matrix as the quantum analog of a local patch of spacetime, and we make an in-depth mathematical analysis of such quantum dynamical pseudo-density matrices and the properties they satisfy. We also show how to explicitly extract quantum dynamics from a given pseudo-density matrix, thus solving an open problem posed in the literature.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.