Patrick Danaher, Dan McGuire, Lidan Wu, Michael Patrick, David Kroeppler, Haiyan Zhai, Deniz G. Olgun, Dennis Gong, Jingyi Cao, William L. Hwang, Joachim Schmid, Joseph M. Beechem
{"title":"InSituCor: exploring spatially correlated genes conditional on the cell type landscape","authors":"Patrick Danaher, Dan McGuire, Lidan Wu, Michael Patrick, David Kroeppler, Haiyan Zhai, Deniz G. Olgun, Dennis Gong, Jingyi Cao, William L. Hwang, Joachim Schmid, Joseph M. Beechem","doi":"10.1186/s13059-025-03554-1","DOIUrl":null,"url":null,"abstract":"In spatial transcriptomics data, spatially correlated genes promise to reveal high-interest phenomena like cell–cell interactions and latent variables. But in practice, most spatial correlations arise from the spatial arrangement of cell types, obscuring the more interesting relationships we hope to discover. We introduce InSituCor, a toolkit for discovering modules of spatially correlated genes. InSituCor returns only correlations not explainable by already-known factors like the cell type landscape; this spares precious analyst effort. InSituCor supports both unbiased discovery of whole-dataset correlations and knowledge-driven exploration of genes of interest. As a special case, it evaluates ligand-receptor pairs for spatial co-regulation.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"6 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03554-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In spatial transcriptomics data, spatially correlated genes promise to reveal high-interest phenomena like cell–cell interactions and latent variables. But in practice, most spatial correlations arise from the spatial arrangement of cell types, obscuring the more interesting relationships we hope to discover. We introduce InSituCor, a toolkit for discovering modules of spatially correlated genes. InSituCor returns only correlations not explainable by already-known factors like the cell type landscape; this spares precious analyst effort. InSituCor supports both unbiased discovery of whole-dataset correlations and knowledge-driven exploration of genes of interest. As a special case, it evaluates ligand-receptor pairs for spatial co-regulation.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.