Optimal Transport and Central Moment Consistency Regularization for Semi-Supervised Medical Image Segmentation

Xiuzhen Guo;Lianyuan Yu;Ji Shi;Hongxiao Wang;Jiangyuan Zhao;Rongguo Zhang;Hongwei Li;Na Lei
{"title":"Optimal Transport and Central Moment Consistency Regularization for Semi-Supervised Medical Image Segmentation","authors":"Xiuzhen Guo;Lianyuan Yu;Ji Shi;Hongxiao Wang;Jiangyuan Zhao;Rongguo Zhang;Hongwei Li;Na Lei","doi":"10.1109/TMI.2025.3563500","DOIUrl":null,"url":null,"abstract":"Semi-supervised learning leverages insights from unlabeled data to enhance generalizability of the model, thereby decreasing the dependence on extensive labeled datasets. Most existing methods overly focus on local representations while neglecting the learning of global structures. On the one hand, given that labeled and unlabeled images are presumed to originate from the same distribution, it is probable that similar regional features observed in both types of images correspond to the same label. Current label propagation techniques, which predominantly propagate label information through the construction of graph structures or similarity matrices, heavily depend on localized information and are prone to converge to local optima. In contrast, optimal transport considers the entire distribution. This facilitates more comprehensive and efficient label propagation. On the other hand, current consistency regularization-based methods focus on the local view, we believe learning from a global geometric view may capture more information. Geometric moment information of the sample itself can constrain the overall geometric structure. Inspired by these observations, this paper introduces a semi-supervised medical image segmentation framework that integrates optimal transport and central moment consistency regularization (OTCMC) from a global perspective. Firstly, we pass label information from labeled data to unlabeled data by optimal transport. Secondly, we incorporate central moment consistency regularization to focus the network on the geometric structure of images. Our method achieves the state-of-the-art (SOTA) performance on a series of datasets, including the NIH pancreas, left atrium, brain tumor, and skin lesion dermoscopy datasets.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 8","pages":"3397-3409"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10975063/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Semi-supervised learning leverages insights from unlabeled data to enhance generalizability of the model, thereby decreasing the dependence on extensive labeled datasets. Most existing methods overly focus on local representations while neglecting the learning of global structures. On the one hand, given that labeled and unlabeled images are presumed to originate from the same distribution, it is probable that similar regional features observed in both types of images correspond to the same label. Current label propagation techniques, which predominantly propagate label information through the construction of graph structures or similarity matrices, heavily depend on localized information and are prone to converge to local optima. In contrast, optimal transport considers the entire distribution. This facilitates more comprehensive and efficient label propagation. On the other hand, current consistency regularization-based methods focus on the local view, we believe learning from a global geometric view may capture more information. Geometric moment information of the sample itself can constrain the overall geometric structure. Inspired by these observations, this paper introduces a semi-supervised medical image segmentation framework that integrates optimal transport and central moment consistency regularization (OTCMC) from a global perspective. Firstly, we pass label information from labeled data to unlabeled data by optimal transport. Secondly, we incorporate central moment consistency regularization to focus the network on the geometric structure of images. Our method achieves the state-of-the-art (SOTA) performance on a series of datasets, including the NIH pancreas, left atrium, brain tumor, and skin lesion dermoscopy datasets.
半监督医学图像分割的最优传输和中心矩一致性正则化
半监督学习利用来自未标记数据的洞察力来增强模型的可泛化性,从而减少对大量标记数据集的依赖。大多数现有方法过于关注局部表示,而忽略了全局结构的学习。一方面,假设有标记和未标记的图像来自相同的分布,很可能在两种类型的图像中观察到的相似区域特征对应于相同的标签。目前的标签传播技术主要是通过构建图结构或相似矩阵来传播标签信息,严重依赖于局部信息,容易收敛到局部最优。相比之下,最优运输考虑的是整个分布。这有助于更全面和有效的标签传播。另一方面,当前基于一致性正则化的方法侧重于局部视图,我们认为从全局几何视图中学习可以捕获更多信息。样品本身的几何矩信息可以约束整体的几何结构。受这些观察结果的启发,本文从全局角度引入了一种集最优传输和中心矩一致性正则化(OTCMC)于一体的半监督医学图像分割框架。首先,我们通过最优传输将标签信息从标记数据传递到未标记数据。其次,引入中心矩一致性正则化,使网络集中在图像的几何结构上。我们的方法在一系列数据集上实现了最先进的(SOTA)性能,包括NIH胰腺、左心房、脑肿瘤和皮肤病变皮肤镜数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信