Jiho Lee, Junseung Mun, Minhye Choo, Sung-Min Park
{"title":"Predictive modeling of hemodynamics during viscerosensory neurostimulation via neural computation mechanism in the brainstem","authors":"Jiho Lee, Junseung Mun, Minhye Choo, Sung-Min Park","doi":"10.1038/s41746-025-01635-w","DOIUrl":null,"url":null,"abstract":"<p>Neurostimulation for cardiovascular control faces challenges due to the lack of predictive modeling for stimulus-driven dynamic responses, which is crucial for precise neuromodulation via quality feedback. We address this by employing a digital twin approach that leverages computational mechanisms underlying neuro-hemodynamic responses during neurostimulation. Our results emphasize the computational role of the nucleus tractus solitarius (NTS) in the brainstem in determining these responses. The intrinsic neural circuit within the NTS harbors collective dynamics residing in a low-dimensional latent space, which effectively captures stimulus-driven hemodynamic perturbations. Building on this, we developed a digital twin framework for individually optimized predictive modeling of neuromodulatory outcomes. This framework potentially enables the design of closed-loop neurostimulation systems for precise hemodynamic control. Consequently, our digital twin based on neural computation mechanisms marks an advancement in the artificial regulation of internal organs, paving the way for precise translational medicine to treat chronic diseases.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"32 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01635-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Neurostimulation for cardiovascular control faces challenges due to the lack of predictive modeling for stimulus-driven dynamic responses, which is crucial for precise neuromodulation via quality feedback. We address this by employing a digital twin approach that leverages computational mechanisms underlying neuro-hemodynamic responses during neurostimulation. Our results emphasize the computational role of the nucleus tractus solitarius (NTS) in the brainstem in determining these responses. The intrinsic neural circuit within the NTS harbors collective dynamics residing in a low-dimensional latent space, which effectively captures stimulus-driven hemodynamic perturbations. Building on this, we developed a digital twin framework for individually optimized predictive modeling of neuromodulatory outcomes. This framework potentially enables the design of closed-loop neurostimulation systems for precise hemodynamic control. Consequently, our digital twin based on neural computation mechanisms marks an advancement in the artificial regulation of internal organs, paving the way for precise translational medicine to treat chronic diseases.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.