High-efficiency metal selenide as electrocatalyst in separator for lithium-sulfur batteries

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Yujuan Hu, Bo Jin, Hui Liu
{"title":"High-efficiency metal selenide as electrocatalyst in separator for lithium-sulfur batteries","authors":"Yujuan Hu, Bo Jin, Hui Liu","doi":"10.1039/d5qi00452g","DOIUrl":null,"url":null,"abstract":"The well-framed construction of separator modifier with exquisite catalytic ability and adsorption effect for lithium polysulfides (LiPSs) is crucial for solving properly the challenges encountered by lithium-sulfur batteries (LSBs). Herein, a metal-organic framework (MOF) substrate with porous polyhedron is firstly designed, then the mixture of ZIF-67 and melamine is carbonized into N-doped carbon (NC) covered with cobalt nanoparticles that are surrounded by carbon nanotubes to obtain Co/NCC, which is finally selenized in situ to form CoSe/NCC with high adsorption effect and accelerated polysulfide conversion ability. The CoSe/NCC is coated onto the polypropylene (PP) separator (CoSe/NCC/PP) to inhibit the LiPSs shuttle passing through the separator. Multi-walled carbon nanotubes (MWCNTs) are accustomed to fusing sulfur as a positive electrode (MWCNTs/S). The CoSe/NCC with high conductivity and sulfiphilic property possesses many active sites and anchors LiPSs, thus promoting multistage redox reaction kinetics. The electrochemical tests show that the initial discharge capacity of a lithium-sulfur battery with a CoSe/NCC/PP separator and a MWCNTs/S cathode is 1270 mAh g−1 at 0.5 C, and the discharge capacity is kept at 932 mAh g−1 after 100 cycles, with a capacity retention rate of 73%. In addition, it has also good cyclic performance under high current densities of 1 and 5 C. This work provides ideas and methods for the application of metal selenides as separator modification materials in LSBs, which would be expected to be applied to other rechargeable batteries.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"13 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qi00452g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The well-framed construction of separator modifier with exquisite catalytic ability and adsorption effect for lithium polysulfides (LiPSs) is crucial for solving properly the challenges encountered by lithium-sulfur batteries (LSBs). Herein, a metal-organic framework (MOF) substrate with porous polyhedron is firstly designed, then the mixture of ZIF-67 and melamine is carbonized into N-doped carbon (NC) covered with cobalt nanoparticles that are surrounded by carbon nanotubes to obtain Co/NCC, which is finally selenized in situ to form CoSe/NCC with high adsorption effect and accelerated polysulfide conversion ability. The CoSe/NCC is coated onto the polypropylene (PP) separator (CoSe/NCC/PP) to inhibit the LiPSs shuttle passing through the separator. Multi-walled carbon nanotubes (MWCNTs) are accustomed to fusing sulfur as a positive electrode (MWCNTs/S). The CoSe/NCC with high conductivity and sulfiphilic property possesses many active sites and anchors LiPSs, thus promoting multistage redox reaction kinetics. The electrochemical tests show that the initial discharge capacity of a lithium-sulfur battery with a CoSe/NCC/PP separator and a MWCNTs/S cathode is 1270 mAh g−1 at 0.5 C, and the discharge capacity is kept at 932 mAh g−1 after 100 cycles, with a capacity retention rate of 73%. In addition, it has also good cyclic performance under high current densities of 1 and 5 C. This work provides ideas and methods for the application of metal selenides as separator modification materials in LSBs, which would be expected to be applied to other rechargeable batteries.
构建具有良好催化能力和吸附效果的多硫化锂(LiPSs)隔膜改性剂,是妥善解决锂硫电池(LSBs)难题的关键。本文首先设计了一种具有多孔多面体的金属有机框架(MOF)基底,然后将 ZIF-67 和三聚氰胺的混合物碳化成掺杂 N 的碳(NC),并在碳纳米管中包覆钴纳米颗粒,得到 Co/NCC,最后将其原位硒化,形成具有高吸附效果和加速多硫化物转化能力的 CoSe/NCC。CoSe/NCC 被涂覆在聚丙烯(PP)分离器(CoSe/NCC/PP)上,以抑制锂离子穿梭通过分离器。多壁碳纳米管(MWCNTs)习惯于熔硫作为正极(MWCNTs/S)。具有高导电性和亲硫性的 CoSe/NCC 拥有许多活性位点,可锚定锂离子电池,从而促进多级氧化还原反应动力学。电化学测试表明,采用 CoSe/NCC/PP 隔膜和 MWCNTs/S 正极的锂硫电池在 0.5 C 下的初始放电容量为 1270 mAh g-1,循环 100 次后放电容量保持在 932 mAh g-1,容量保持率为 73%。这项工作为金属硒化物作为隔膜改性材料在 LSB 中的应用提供了思路和方法,有望应用于其他充电电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信