Ran Jing, Boyi Zhou, Jiacheng Sun, Shoujing Chen, Wenjun Zheng, Zijian Zhou, Heng Wang, Lukas Wehmeier, Bing Cheng, Michael Dapolito, Yinan Dong, Zengyi Du, G. L. Carr, Xu Du, D. N. Basov, Qiang Li, Mengkun Liu
{"title":"Photocurrent Nanoscopy of Quantum Hall Bulk","authors":"Ran Jing, Boyi Zhou, Jiacheng Sun, Shoujing Chen, Wenjun Zheng, Zijian Zhou, Heng Wang, Lukas Wehmeier, Bing Cheng, Michael Dapolito, Yinan Dong, Zengyi Du, G. L. Carr, Xu Du, D. N. Basov, Qiang Li, Mengkun Liu","doi":"10.1103/physrevx.15.021026","DOIUrl":null,"url":null,"abstract":"Understanding nanoscale electronic and thermal transport of two-dimensional (2D) electron systems in the quantum Hall regime, particularly in the bulk insulating state, poses considerable challenges. One of the primary difficulties arises from the presence of chiral edge channels, whose transport behavior obscures the investigation of the insulating bulk. Using near-field optical and photocurrent nanoscopy, we probe real-space variations of the optical and thermal dynamics of graphene in the quantum Hall regime without relying on complex sample or electrode geometries. Near the charge-neutrality point, we detect strong optical and photothermal signals from resonant inter-Landau-level (LL) magnetoexciton excitations between the zeroth and ±</a:mo>1</a:mn></a:mrow></a:math> st LLs, which gradually weaken with increasing doping due to Pauli blocking. Interestingly, at higher doping levels and full-integer LL fillings, photothermal signals reappear across the entire sample over an approximately <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mn>10</c:mn><c:mtext>−</c:mtext><c:mrow><c:mi mathvariant=\"normal\">μ</c:mi><c:mi mathvariant=\"normal\">m</c:mi></c:mrow></c:mrow></c:math> scale, indicating unexpectedly long cooling lengths and nonlocal photothermal heating through the insulating bulk. This observation suggests that thermal conductivity persists for the localized states even as electronic transport is suppressed—a clear violation of the Wiedemann-Franz law. Our experiments provide novel insights into nanoscale thermal and electronic transport in incompressible 2D gases, highlighting the roles of magnetoexcitons and chiral edge states in the thermo-optoelectric dynamics of the Dirac quantum Hall state. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"31 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021026","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding nanoscale electronic and thermal transport of two-dimensional (2D) electron systems in the quantum Hall regime, particularly in the bulk insulating state, poses considerable challenges. One of the primary difficulties arises from the presence of chiral edge channels, whose transport behavior obscures the investigation of the insulating bulk. Using near-field optical and photocurrent nanoscopy, we probe real-space variations of the optical and thermal dynamics of graphene in the quantum Hall regime without relying on complex sample or electrode geometries. Near the charge-neutrality point, we detect strong optical and photothermal signals from resonant inter-Landau-level (LL) magnetoexciton excitations between the zeroth and ±1 st LLs, which gradually weaken with increasing doping due to Pauli blocking. Interestingly, at higher doping levels and full-integer LL fillings, photothermal signals reappear across the entire sample over an approximately 10−μm scale, indicating unexpectedly long cooling lengths and nonlocal photothermal heating through the insulating bulk. This observation suggests that thermal conductivity persists for the localized states even as electronic transport is suppressed—a clear violation of the Wiedemann-Franz law. Our experiments provide novel insights into nanoscale thermal and electronic transport in incompressible 2D gases, highlighting the roles of magnetoexcitons and chiral edge states in the thermo-optoelectric dynamics of the Dirac quantum Hall state. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.