Canran Wang, Kexin Fan, Ehsan Shirzaei Sani, José A. Lasalde-Ramírez, Wenzheng Heng, Jihong Min, Samuel A. Solomon, Minqiang Wang, Jiahong Li, Hong Han, Gwangmook Kim, Soyoung Shin, Alex Seder, Chia-Ding Shih, David G. Armstrong, Wei Gao
{"title":"A microfluidic wearable device for wound exudate management and analysis in human chronic wounds","authors":"Canran Wang, Kexin Fan, Ehsan Shirzaei Sani, José A. Lasalde-Ramírez, Wenzheng Heng, Jihong Min, Samuel A. Solomon, Minqiang Wang, Jiahong Li, Hong Han, Gwangmook Kim, Soyoung Shin, Alex Seder, Chia-Ding Shih, David G. Armstrong, Wei Gao","doi":"10.1126/scitranslmed.adt0882","DOIUrl":null,"url":null,"abstract":"<div >Chronic wounds are a major global health challenge associated with substantial economic burden and a negative impact on patient quality of life. Real-time analysis of biomarkers like reactive oxygen and nitrogen species could guide treatment, but existing systems lack the capacity required for continuous monitoring. Wound exudate is secreted slowly and has a complex composition, making efficient fluid collection and real-time analysis challenging. To address these issues, we introduce iCares, a wearable device for wound exudate management and continuous in situ analysis of wound biomarkers. iCares contains a flexible nanoengineered sensor array that measures reactive species such as NO, H<sub>2</sub>O<sub>2</sub>, and O<sub>2</sub>, along with pH and temperature, providing multiparameter data to inform wound status. The device features pump-free triad microfluidic modules with a superhydrophobic-superhydrophilic Janus membrane, bioinspired wedge channels, and three-dimensional graded micropillars for efficient unidirectional exudate collection, transport, and refreshing. The sensors demonstrated a consistent response and analyte selectivity in vitro and in wound exudate. iCares was designed for rapid scalable manufacturing through advanced printing and laser patterning. Wireless connectivity supported long-term continuous monitoring in wounds. The iCares system real-time monitoring was tested in a murine model of diabetic skin wound during infection and antimicrobial treatment. Clinical wound evaluation was conducted in 20 patients with chronic wounds and in two patients before and after surgery. A machine learning analysis of the multiplexed data successfully classified wounds and healing times, indicating that wound exudate analysis by iCares could offer insight into chronic wound status to aid in treatment decisions.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"17 795","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/scitranslmed.adt0882","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic wounds are a major global health challenge associated with substantial economic burden and a negative impact on patient quality of life. Real-time analysis of biomarkers like reactive oxygen and nitrogen species could guide treatment, but existing systems lack the capacity required for continuous monitoring. Wound exudate is secreted slowly and has a complex composition, making efficient fluid collection and real-time analysis challenging. To address these issues, we introduce iCares, a wearable device for wound exudate management and continuous in situ analysis of wound biomarkers. iCares contains a flexible nanoengineered sensor array that measures reactive species such as NO, H2O2, and O2, along with pH and temperature, providing multiparameter data to inform wound status. The device features pump-free triad microfluidic modules with a superhydrophobic-superhydrophilic Janus membrane, bioinspired wedge channels, and three-dimensional graded micropillars for efficient unidirectional exudate collection, transport, and refreshing. The sensors demonstrated a consistent response and analyte selectivity in vitro and in wound exudate. iCares was designed for rapid scalable manufacturing through advanced printing and laser patterning. Wireless connectivity supported long-term continuous monitoring in wounds. The iCares system real-time monitoring was tested in a murine model of diabetic skin wound during infection and antimicrobial treatment. Clinical wound evaluation was conducted in 20 patients with chronic wounds and in two patients before and after surgery. A machine learning analysis of the multiplexed data successfully classified wounds and healing times, indicating that wound exudate analysis by iCares could offer insight into chronic wound status to aid in treatment decisions.
期刊介绍:
Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research.
The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases.
The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine.
The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.