Highly efficient spray cooling enabled by acoustic microdroplet atomizer

Droplet Pub Date : 2025-03-08 DOI:10.1002/dro2.70002
Tianhua Chen, Wenming Li
{"title":"Highly efficient spray cooling enabled by acoustic microdroplet atomizer","authors":"Tianhua Chen,&nbsp;Wenming Li","doi":"10.1002/dro2.70002","DOIUrl":null,"url":null,"abstract":"<p>Droplets are ubiquitous in nature and play an essential role in spray cooling, which is a highly efficient cooling approach for high-power-density miniaturized electronic devices. However, conventional pressure-driven spray faces significant challenges in controlling microdroplet characteristics, particularly the droplet size and spray direction, both of which critically impact cooling performance. Herein, to conquer these challenges, we designed an acoustic microdroplet atomizer composed of a lead zirconate titanate (PZT) transducer and silicon inverted pyramid nozzles. This design enables precise control of droplet generation, overcoming the limitations of traditional spray methods. The acoustic atomization technology minimizes excess liquid accumulation while significantly enhancing thin liquid film evaporation. Compared to the conventional droplet generation techniques such as pressure-driven, injector-based, and piezoelectric spray, our acoustic atomizer achieves superior cooling performance. Notably, we demonstrate a high heat flux of ∼220 W/cm<sup>2</sup> with a 3.6-fold enhancement at a low flow rate of 24 mL/min, achieving significantly improved cooling efficiency. Finally, our acoustic atomizer provides precise control over droplet size, velocity, and flow rate by adjusting the number of nozzles and the PZT transducer's resonant frequency, elevating spray cooling performance. This novel acoustic atomization cooling technology holds great promise for practical applications, particularly in the thermal management of compact electronic components.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.70002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Droplet","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dro2.70002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Droplets are ubiquitous in nature and play an essential role in spray cooling, which is a highly efficient cooling approach for high-power-density miniaturized electronic devices. However, conventional pressure-driven spray faces significant challenges in controlling microdroplet characteristics, particularly the droplet size and spray direction, both of which critically impact cooling performance. Herein, to conquer these challenges, we designed an acoustic microdroplet atomizer composed of a lead zirconate titanate (PZT) transducer and silicon inverted pyramid nozzles. This design enables precise control of droplet generation, overcoming the limitations of traditional spray methods. The acoustic atomization technology minimizes excess liquid accumulation while significantly enhancing thin liquid film evaporation. Compared to the conventional droplet generation techniques such as pressure-driven, injector-based, and piezoelectric spray, our acoustic atomizer achieves superior cooling performance. Notably, we demonstrate a high heat flux of ∼220 W/cm2 with a 3.6-fold enhancement at a low flow rate of 24 mL/min, achieving significantly improved cooling efficiency. Finally, our acoustic atomizer provides precise control over droplet size, velocity, and flow rate by adjusting the number of nozzles and the PZT transducer's resonant frequency, elevating spray cooling performance. This novel acoustic atomization cooling technology holds great promise for practical applications, particularly in the thermal management of compact electronic components.

Abstract Image

采用声学微滴雾化装置,实现高效喷雾冷却
微滴在自然界中无处不在,在喷雾冷却中发挥着重要作用,是高功率密度微型电子设备的高效冷却方法。然而,传统的压力驱动喷雾在控制微液滴特性方面面临着巨大挑战,尤其是液滴大小和喷雾方向,这两个因素对冷却性能有着至关重要的影响。为了克服这些挑战,我们设计了一种由锆钛酸铅(PZT)传感器和硅倒金字塔喷嘴组成的声学微液滴雾化器。这种设计能够精确控制液滴的产生,克服了传统喷雾方法的局限性。声学雾化技术最大限度地减少了多余液体的积聚,同时显著提高了薄液膜的蒸发能力。与压力驱动、喷射器和压电喷雾等传统液滴生成技术相比,我们的声学雾化器实现了卓越的冷却性能。值得注意的是,我们在 24 mL/min 的低流量条件下实现了 ∼220 W/cm2 的高热通量,热通量提高了 3.6 倍,从而显著提高了冷却效率。最后,我们的声学雾化器可通过调节喷嘴数量和 PZT 传感器的谐振频率来精确控制液滴大小、速度和流量,从而提高喷雾冷却性能。这种新型声学雾化冷却技术在实际应用中大有可为,特别是在紧凑型电子元件的热管理方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信