Integrated Optimisation of Shop Scheduling and Machine Layout for Discrete Manufacturing Considering Uncertain Events Based on an Improved Immune Genetic Algorithm
Zhaoxi Hong, Yixiong Feng, Amir M. Fathollahi-Fard, Zhiwu Li, Bingtao Hu, Jianrong Tan
{"title":"Integrated Optimisation of Shop Scheduling and Machine Layout for Discrete Manufacturing Considering Uncertain Events Based on an Improved Immune Genetic Algorithm","authors":"Zhaoxi Hong, Yixiong Feng, Amir M. Fathollahi-Fard, Zhiwu Li, Bingtao Hu, Jianrong Tan","doi":"10.1049/cim2.70022","DOIUrl":null,"url":null,"abstract":"<p>Shop scheduling and machine layout are two important aspects of discrete manufacturing. There are strong coupling relationships between them, but they were conducted separately in the past, which significantly limits the production performance improvement of discrete manufacturing. At the same time, in the actual process of workshop production, uncertain events not only often occur but also may make the existing scheduling schemes no longer suitable. To address such issues, the integrated optimisation of shop scheduling and machine layout for discrete manufacturing considering uncertain events is proposed in this paper, where the minimum material handling cost, the maximum space utilisation rate and the minimum production completion time are selected as the optimisation objectives. An improved immune genetic algorithm is designed to solve the corresponding mathematical model efficiently by dual-layer encoding, which is good at global optimisation. Moreover, multistrategy redundancy-aware workshop rescheduling is performed to respond to uncertain events that are regarded as production disturbances. The rationality and superiority of the proposed method are verified by a numerical case study of a discrete manufacturing workshop for wood–plastic composite materials with its integrated optimisation of shop scheduling and machine layout, as well as its rescheduling schemes under machine failures.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"7 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.70022","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Collaborative Intelligent Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cim2.70022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Shop scheduling and machine layout are two important aspects of discrete manufacturing. There are strong coupling relationships between them, but they were conducted separately in the past, which significantly limits the production performance improvement of discrete manufacturing. At the same time, in the actual process of workshop production, uncertain events not only often occur but also may make the existing scheduling schemes no longer suitable. To address such issues, the integrated optimisation of shop scheduling and machine layout for discrete manufacturing considering uncertain events is proposed in this paper, where the minimum material handling cost, the maximum space utilisation rate and the minimum production completion time are selected as the optimisation objectives. An improved immune genetic algorithm is designed to solve the corresponding mathematical model efficiently by dual-layer encoding, which is good at global optimisation. Moreover, multistrategy redundancy-aware workshop rescheduling is performed to respond to uncertain events that are regarded as production disturbances. The rationality and superiority of the proposed method are verified by a numerical case study of a discrete manufacturing workshop for wood–plastic composite materials with its integrated optimisation of shop scheduling and machine layout, as well as its rescheduling schemes under machine failures.
期刊介绍:
IET Collaborative Intelligent Manufacturing is a Gold Open Access journal that focuses on the development of efficient and adaptive production and distribution systems. It aims to meet the ever-changing market demands by publishing original research on methodologies and techniques for the application of intelligence, data science, and emerging information and communication technologies in various aspects of manufacturing, such as design, modeling, simulation, planning, and optimization of products, processes, production, and assembly.
The journal is indexed in COMPENDEX (Elsevier), Directory of Open Access Journals (DOAJ), Emerging Sources Citation Index (Clarivate Analytics), INSPEC (IET), SCOPUS (Elsevier) and Web of Science (Clarivate Analytics).