Sunil Prajapat, Mohammad S. Obaidat, Vivek Bharmaik, Garima Thakur, Pankaj Kumar
{"title":"Quantum Safe Proxy Blind Signature Protocol Based on 3D Entangled GHZ-Type States","authors":"Sunil Prajapat, Mohammad S. Obaidat, Vivek Bharmaik, Garima Thakur, Pankaj Kumar","doi":"10.1002/ett.70140","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>As quantum technology advances, classical digital signatures exhibit vulnerabilities in preserving security properties during the transmission of information. Working toward a reliable communication protocol, we introduce a proxy blind signature scheme to teleport a single particle qubit state with a message to the receiver, employing a three qubit GHZ entangled state. The blindness property is utilized to secure the message information from the proxy signer. A trusted party, Trent, is introduced to supervise the communication process. Alice blinds the original message and sends the Bell measurements with her entangled particle to proxy signer Charlie. After receiving measurements from Alice and Charlie, Bob verifies the proxy blind signature and performs appropriate unitary operations on his particle. Thereafter, Trent verifies the security of the quantum teleportation setup by matching the output data with the original data sent by Alice. Security analysis results prove that the proposed scheme fulfils the basic security necessities, including undeniability, unforgeability, blindness, verifiability, and traceability.</p>\n </div>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"36 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.70140","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
As quantum technology advances, classical digital signatures exhibit vulnerabilities in preserving security properties during the transmission of information. Working toward a reliable communication protocol, we introduce a proxy blind signature scheme to teleport a single particle qubit state with a message to the receiver, employing a three qubit GHZ entangled state. The blindness property is utilized to secure the message information from the proxy signer. A trusted party, Trent, is introduced to supervise the communication process. Alice blinds the original message and sends the Bell measurements with her entangled particle to proxy signer Charlie. After receiving measurements from Alice and Charlie, Bob verifies the proxy blind signature and performs appropriate unitary operations on his particle. Thereafter, Trent verifies the security of the quantum teleportation setup by matching the output data with the original data sent by Alice. Security analysis results prove that the proposed scheme fulfils the basic security necessities, including undeniability, unforgeability, blindness, verifiability, and traceability.
期刊介绍:
ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims:
- to attract cutting-edge publications from leading researchers and research groups around the world
- to become a highly cited source of timely research findings in emerging fields of telecommunications
- to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish
- to become the leading journal for publishing the latest developments in telecommunications