Predictor-Based Output Feedback Control of Tumour Growth With Positive Input: Application to Antiangiogenic Therapy

IF 1.9 4区 生物学 Q4 CELL BIOLOGY
Mohamadreza Homayounzade
{"title":"Predictor-Based Output Feedback Control of Tumour Growth With Positive Input: Application to Antiangiogenic Therapy","authors":"Mohamadreza Homayounzade","doi":"10.1049/syb2.70005","DOIUrl":null,"url":null,"abstract":"<p>Controlling tumour growth systems presents significant challenges due to the inherent restriction of positive input in biological systems, along with delays in system output and input measurements. Traditional control methods struggle to address these issues effectively, as they rely heavily on real-time feedback from system outputs. The delays in output measurements can lead to instability in closed-loop systems, whereas the inability of conventional approaches to manage the positive input constraint often results in ineffective control. In this study, the authors propose a novel control system designed to overcome these challenges. First, a system state prediction observer that utilises delayed output measurements was developed. Next, a backstepping technique was utilized to develop a feedback controller that ensures the control input stays positive, thereby guaranteeing the system's asymptotic stability. Furthermore, numerical comparisons with previous research validate the effectiveness of the proposed strategy. Overall, the approach offers a promising solution to the issues of delays and positive input constraints in tumour growth control systems.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.70005","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.70005","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Controlling tumour growth systems presents significant challenges due to the inherent restriction of positive input in biological systems, along with delays in system output and input measurements. Traditional control methods struggle to address these issues effectively, as they rely heavily on real-time feedback from system outputs. The delays in output measurements can lead to instability in closed-loop systems, whereas the inability of conventional approaches to manage the positive input constraint often results in ineffective control. In this study, the authors propose a novel control system designed to overcome these challenges. First, a system state prediction observer that utilises delayed output measurements was developed. Next, a backstepping technique was utilized to develop a feedback controller that ensures the control input stays positive, thereby guaranteeing the system's asymptotic stability. Furthermore, numerical comparisons with previous research validate the effectiveness of the proposed strategy. Overall, the approach offers a promising solution to the issues of delays and positive input constraints in tumour growth control systems.

Abstract Image

基于预测的正输入肿瘤生长输出反馈控制:在抗血管生成治疗中的应用
由于生物系统固有的正输入限制,以及系统输出和输入测量的延迟,控制肿瘤生长系统提出了重大挑战。传统的控制方法很难有效地解决这些问题,因为它们严重依赖于系统输出的实时反馈。输出测量的延迟可能导致闭环系统的不稳定,而传统方法无法管理正输入约束往往导致控制无效。在这项研究中,作者提出了一种新的控制系统,旨在克服这些挑战。首先,开发了一个利用延迟输出测量的系统状态预测观测器。其次,利用回溯技术开发了一种保证控制输入为正的反馈控制器,从而保证了系统的渐近稳定性。通过与已有研究的数值比较,验证了所提策略的有效性。总的来说,该方法为肿瘤生长控制系统中的延迟和正输入约束问题提供了一个有希望的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Systems Biology
IET Systems Biology 生物-数学与计算生物学
CiteScore
4.20
自引率
4.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells. The scope includes the following topics: Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信