{"title":"Predictor-Based Output Feedback Control of Tumour Growth With Positive Input: Application to Antiangiogenic Therapy","authors":"Mohamadreza Homayounzade","doi":"10.1049/syb2.70005","DOIUrl":null,"url":null,"abstract":"<p>Controlling tumour growth systems presents significant challenges due to the inherent restriction of positive input in biological systems, along with delays in system output and input measurements. Traditional control methods struggle to address these issues effectively, as they rely heavily on real-time feedback from system outputs. The delays in output measurements can lead to instability in closed-loop systems, whereas the inability of conventional approaches to manage the positive input constraint often results in ineffective control. In this study, the authors propose a novel control system designed to overcome these challenges. First, a system state prediction observer that utilises delayed output measurements was developed. Next, a backstepping technique was utilized to develop a feedback controller that ensures the control input stays positive, thereby guaranteeing the system's asymptotic stability. Furthermore, numerical comparisons with previous research validate the effectiveness of the proposed strategy. Overall, the approach offers a promising solution to the issues of delays and positive input constraints in tumour growth control systems.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.70005","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.70005","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Controlling tumour growth systems presents significant challenges due to the inherent restriction of positive input in biological systems, along with delays in system output and input measurements. Traditional control methods struggle to address these issues effectively, as they rely heavily on real-time feedback from system outputs. The delays in output measurements can lead to instability in closed-loop systems, whereas the inability of conventional approaches to manage the positive input constraint often results in ineffective control. In this study, the authors propose a novel control system designed to overcome these challenges. First, a system state prediction observer that utilises delayed output measurements was developed. Next, a backstepping technique was utilized to develop a feedback controller that ensures the control input stays positive, thereby guaranteeing the system's asymptotic stability. Furthermore, numerical comparisons with previous research validate the effectiveness of the proposed strategy. Overall, the approach offers a promising solution to the issues of delays and positive input constraints in tumour growth control systems.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.