{"title":"Salvianolic Acid A Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Activating AMPK/SIRT1/Nrf2 Signaling Pathway","authors":"Pengwei Wang, Yu Sun, Ru Zhang, Yongli Guo, Yongheng Zhang, Shengjie Guo, Yemin Wang, Jianlian Gao, Pengfei Yang, Zhijian Deng","doi":"10.1002/jbt.70282","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Salvianolic acid A (Sal A) has been reported to have anti-inflammatory and antioxidant properties. The present study aimed to explore the potential mechanisms of Sal A on lipopolysaccharide (LPS)-induced acute lung injury (ALI). The results indicated that Sal A pretreatment attenuated LPS induced lung injury, shown by alleviated histopathological damage and alveolar-capillary barrier dysfunction, as well as reduced inflammatory response and oxidative stress. Moreover, Sal A pretreatment effectively increased the expression of p-AMPK and SIRT1 and promoted Nrf2 nuclear translocation in lung tissues. However, these effects were remarkably blunted by Compound C. Molecular docking experiments further confirmed that Sal A bound well to the active sites of AMPK and SIRT1. In conclusion, these results indicated that Sal A exerted its protective effects on LPS-induced ALI through suppressing inflammation and oxidative stress, which was mainly dependent on the activation of AMPK/SIRT1/Nrf2 signaling pathway.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70282","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Salvianolic acid A (Sal A) has been reported to have anti-inflammatory and antioxidant properties. The present study aimed to explore the potential mechanisms of Sal A on lipopolysaccharide (LPS)-induced acute lung injury (ALI). The results indicated that Sal A pretreatment attenuated LPS induced lung injury, shown by alleviated histopathological damage and alveolar-capillary barrier dysfunction, as well as reduced inflammatory response and oxidative stress. Moreover, Sal A pretreatment effectively increased the expression of p-AMPK and SIRT1 and promoted Nrf2 nuclear translocation in lung tissues. However, these effects were remarkably blunted by Compound C. Molecular docking experiments further confirmed that Sal A bound well to the active sites of AMPK and SIRT1. In conclusion, these results indicated that Sal A exerted its protective effects on LPS-induced ALI through suppressing inflammation and oxidative stress, which was mainly dependent on the activation of AMPK/SIRT1/Nrf2 signaling pathway.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.