The Evolution of Sulfide Melts as a Key Factor in the Distribution and Concentration of Platinum-Group Elements in Norilsk Ores

IF 1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
V. D. Brovchenko
{"title":"The Evolution of Sulfide Melts as a Key Factor in the Distribution and Concentration of Platinum-Group Elements in Norilsk Ores","authors":"V. D. Brovchenko","doi":"10.1134/S0869591124700322","DOIUrl":null,"url":null,"abstract":"<p>The Norilsk–Talnakh magmatic sulfide Cu–Ni–PGE (platinum-group elements) deposits were formed by the accumulation of metals in immiscible sulfide melt comagmatic with the parental mafic–ultramafic magma. In this study, the main types of magmatic sulfide ores of the Norilsk–Talnakh deposits are considered as manifestations of different stages in the evolution of the initial sulfide melts. In the context of the overall evolution of Norilsk sulfide melts, the earliest ores are Cu-poor pyrrhotite ores with high concentrations of Rh and IPGE (Os, Ir, and Ru), which were discovered at the Talnakh deposit. The second stage of sulfide melt evolution was marked by the formation of most disseminated ores and Cu- and PGE-poor massive pyrrhotite ores. The massive and disseminated ores were formed independently from each other, but generally correspond to the melts with identical compositions. The only exception is low-sulfur PGE-rich ores from the Upper Gabbroid rocks of the differentiated intrusions, which were affected by wall rock assimilation and early magmatic degassing. It has been shown that the concentrations of ore components in the disseminated sulfides, which are examples of in-situ crystallized droplets of immiscible sulfide melt, vary depending on the composition and degree of fractionation of the parental silicate magma. During the final stage, the crystallization of the residual sulfide melts led to the formation of Cu-rich ores with high Pt and Pd contents. The compositions of these main ore types are compared with the compositions (including trace elements) of their base metal sulfides (BMS). All element dependencies in the massive ores follow the fractional crystallization trend of the sulfide melt. PGE in Norilsk ores are concentrated in distinct platinum-group minerals (PGM) and occur as trace elements in BMS. Rhodium and IPGE are concentrated in pyrrhotite, pentlandite, and pyrite; Pt is occasionally found in pyrite; whereas Pd is found predominantly in pentlandite. The concentration of Pd in pentlandite increases from the Cu-poor to Cu-rich ores. Based on a detailed analysis with the application of several methods, the Pd-rich pentlandite (containing 4.84 wt % Pd) from massive primary magmatic Cu-rich <i>MSS–ISS</i> ores is thought to have been formed by a high-temperature mechanism involving a reaction with sulfide melt. Using <i>X</i>-ray absorption spectroscopy (XAS), the oxidation state of Pd in pentlandite (2<sup>+</sup>) and its occurrence in the form of a solid solution, in which Pd apparently replaces Ni in the pentlandite structure, were identified for the first time.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"33 1 supplement","pages":"S1 - S75"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0869591124700322","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Norilsk–Talnakh magmatic sulfide Cu–Ni–PGE (platinum-group elements) deposits were formed by the accumulation of metals in immiscible sulfide melt comagmatic with the parental mafic–ultramafic magma. In this study, the main types of magmatic sulfide ores of the Norilsk–Talnakh deposits are considered as manifestations of different stages in the evolution of the initial sulfide melts. In the context of the overall evolution of Norilsk sulfide melts, the earliest ores are Cu-poor pyrrhotite ores with high concentrations of Rh and IPGE (Os, Ir, and Ru), which were discovered at the Talnakh deposit. The second stage of sulfide melt evolution was marked by the formation of most disseminated ores and Cu- and PGE-poor massive pyrrhotite ores. The massive and disseminated ores were formed independently from each other, but generally correspond to the melts with identical compositions. The only exception is low-sulfur PGE-rich ores from the Upper Gabbroid rocks of the differentiated intrusions, which were affected by wall rock assimilation and early magmatic degassing. It has been shown that the concentrations of ore components in the disseminated sulfides, which are examples of in-situ crystallized droplets of immiscible sulfide melt, vary depending on the composition and degree of fractionation of the parental silicate magma. During the final stage, the crystallization of the residual sulfide melts led to the formation of Cu-rich ores with high Pt and Pd contents. The compositions of these main ore types are compared with the compositions (including trace elements) of their base metal sulfides (BMS). All element dependencies in the massive ores follow the fractional crystallization trend of the sulfide melt. PGE in Norilsk ores are concentrated in distinct platinum-group minerals (PGM) and occur as trace elements in BMS. Rhodium and IPGE are concentrated in pyrrhotite, pentlandite, and pyrite; Pt is occasionally found in pyrite; whereas Pd is found predominantly in pentlandite. The concentration of Pd in pentlandite increases from the Cu-poor to Cu-rich ores. Based on a detailed analysis with the application of several methods, the Pd-rich pentlandite (containing 4.84 wt % Pd) from massive primary magmatic Cu-rich MSS–ISS ores is thought to have been formed by a high-temperature mechanism involving a reaction with sulfide melt. Using X-ray absorption spectroscopy (XAS), the oxidation state of Pd in pentlandite (2+) and its occurrence in the form of a solid solution, in which Pd apparently replaces Ni in the pentlandite structure, were identified for the first time.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Petrology
Petrology 地学-地球科学综合
CiteScore
2.40
自引率
20.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Petrology is a journal of magmatic, metamorphic, and experimental petrology, mineralogy, and geochemistry. The journal offers comprehensive information on all multidisciplinary aspects of theoretical, experimental, and applied petrology. By giving special consideration to studies on the petrography of different regions of the former Soviet Union, Petrology provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信