{"title":"Decoupled matrix Riccati differential equations approach for robust boundary data completion in time-fractional diffusion problems","authors":"Fadhel Jday, Ridha Mdimagh, Haithem Omri","doi":"10.1007/s40065-025-00497-0","DOIUrl":null,"url":null,"abstract":"<div><p>This research introduces an innovative algorithmic framework tailored to solve the inverse boundary data completion problem for time-fractional diffusion equations in a bounded domain, especially under partially specified Neumann and Dirichlet conditions. This issue is notoriously ill-posed in the Hadamard sense, which demands a sophisticated and nuanced approach. Our method innovatively transforms this problem into a system of first-order differential equations linked with Matrix Riccati Differential Equations. Moving beyond traditional methods, our framework integrates a state-of-the-art decoupling algorithm, which effectively blends the strategic depth of optimal control theory with the precision of the Golden Section Search algorithm. This integration determines the optimal regularization parameter essential for ensuring the stability and the reliability of the solution. The robustness and effectiveness of our approach have been rigorously verified through extensive numerical experiments, proving its resilience even in conditions marked by significant noise levels.</p></div>","PeriodicalId":54135,"journal":{"name":"Arabian Journal of Mathematics","volume":"14 1","pages":"85 - 105"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40065-025-00497-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This research introduces an innovative algorithmic framework tailored to solve the inverse boundary data completion problem for time-fractional diffusion equations in a bounded domain, especially under partially specified Neumann and Dirichlet conditions. This issue is notoriously ill-posed in the Hadamard sense, which demands a sophisticated and nuanced approach. Our method innovatively transforms this problem into a system of first-order differential equations linked with Matrix Riccati Differential Equations. Moving beyond traditional methods, our framework integrates a state-of-the-art decoupling algorithm, which effectively blends the strategic depth of optimal control theory with the precision of the Golden Section Search algorithm. This integration determines the optimal regularization parameter essential for ensuring the stability and the reliability of the solution. The robustness and effectiveness of our approach have been rigorously verified through extensive numerical experiments, proving its resilience even in conditions marked by significant noise levels.
期刊介绍:
The Arabian Journal of Mathematics is a quarterly, peer-reviewed open access journal published under the SpringerOpen brand, covering all mainstream branches of pure and applied mathematics.
Owned by King Fahd University of Petroleum and Minerals, AJM publishes carefully refereed research papers in all main-stream branches of pure and applied mathematics. Survey papers may be submitted for publication by invitation only.To be published in AJM, a paper should be a significant contribution to the mathematics literature, well-written, and of interest to a wide audience. All manuscripts will undergo a strict refereeing process; acceptance for publication is based on two positive reviews from experts in the field.Submission of a manuscript acknowledges that the manuscript is original and is not, in whole or in part, published or submitted for publication elsewhere. A copyright agreement is required before the publication of the paper.Manuscripts must be written in English. It is the author''s responsibility to make sure her/his manuscript is written in clear, unambiguous and grammatically correct language.