Relative versions of depth, Ischebeck, and Chouinard formulas with respect to a semidualizing module

IF 0.9 Q2 MATHEMATICS
Maryam Salimi, Elham Tavasoli
{"title":"Relative versions of depth, Ischebeck, and Chouinard formulas with respect to a semidualizing module","authors":"Maryam Salimi,&nbsp;Elham Tavasoli","doi":"10.1007/s40065-025-00498-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>R</i> be a commutative Noetherian ring, and let <i>C</i> be a semidualizing <i>R</i>-module. The present paper aims at studying some properties of <span>\\({\\textrm{Hom}_{\\textrm{R}}}(C, M)\\)</span> and <span>\\(C \\otimes _{R} M\\)</span> where <i>M</i> is a non-zero finitely generated <i>R</i>-module. Also, we investigate other versions of depth formula for relative Tor-independent modules with respect to <i>C</i>. Finally, we establish relative versions of Ischebeck and Chouinard formulas for <i>R</i>-modules of finite relative homological dimensions with respect to <i>C</i>.</p></div>","PeriodicalId":54135,"journal":{"name":"Arabian Journal of Mathematics","volume":"14 1","pages":"171 - 181"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40065-025-00498-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let R be a commutative Noetherian ring, and let C be a semidualizing R-module. The present paper aims at studying some properties of \({\textrm{Hom}_{\textrm{R}}}(C, M)\) and \(C \otimes _{R} M\) where M is a non-zero finitely generated R-module. Also, we investigate other versions of depth formula for relative Tor-independent modules with respect to C. Finally, we establish relative versions of Ischebeck and Chouinard formulas for R-modules of finite relative homological dimensions with respect to C.

相对版本的深度,Ischebeck,和Chouinard公式关于半虚化模块
设R是一个交换诺瑟环,设C是一个半虚化R模。本文研究了\({\textrm{Hom}_{\textrm{R}}}(C, M)\)和\(C \otimes _{R} M\)的一些性质,其中M是一个非零有限生成r模。最后,我们建立了关于C的有限相对同调维r模的Ischebeck和Chouinard公式的相对版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
8.30%
发文量
48
审稿时长
13 weeks
期刊介绍: The Arabian Journal of Mathematics is a quarterly, peer-reviewed open access journal published under the SpringerOpen brand, covering all mainstream branches of pure and applied mathematics. Owned by King Fahd University of Petroleum and Minerals, AJM publishes carefully refereed research papers in all main-stream branches of pure and applied mathematics. Survey papers may be submitted for publication by invitation only.To be published in AJM, a paper should be a significant contribution to the mathematics literature, well-written, and of interest to a wide audience. All manuscripts will undergo a strict refereeing process; acceptance for publication is based on two positive reviews from experts in the field.Submission of a manuscript acknowledges that the manuscript is original and is not, in whole or in part, published or submitted for publication elsewhere. A copyright agreement is required before the publication of the paper.Manuscripts must be written in English. It is the author''s responsibility to make sure her/his manuscript is written in clear, unambiguous and grammatically correct language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信