Limiting Behavior of Minimizing p-Harmonic Maps in 3d as p Goes to 2 with Finite Fundamental Group

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Bohdan Bulanyi, Jean Van Schaftingen, Benoît Van Vaerenbergh
{"title":"Limiting Behavior of Minimizing p-Harmonic Maps in 3d as p Goes to 2 with Finite Fundamental Group","authors":"Bohdan Bulanyi,&nbsp;Jean Van Schaftingen,&nbsp;Benoît Van Vaerenbergh","doi":"10.1007/s00205-025-02086-z","DOIUrl":null,"url":null,"abstract":"<div><p>We study the limiting behavior of minimizing <i>p</i>-harmonic maps from a bounded Lipschitz domain <span>\\(\\Omega \\subset \\mathbb {R}^{3}\\)</span> to a compact connected Riemannian manifold without boundary and with finite fundamental group as <span>\\(p \\nearrow 2\\)</span>. We prove that there exists a closed set <span>\\(S_{*}\\)</span> of finite length such that minimizing <i>p</i>-harmonic maps converge to a locally minimizing harmonic map in <span>\\(\\Omega \\setminus S_{*}\\)</span>. We prove that locally inside <span>\\(\\Omega \\)</span> the singular set <span>\\(S_{*}\\)</span> is a finite union of straight line segments, and it minimizes the mass in the appropriate class of admissible chains. Furthermore, we establish local and global estimates for the limiting singular harmonic map. Under additional assumptions, we prove that globally in <span>\\(\\overline{\\Omega }\\)</span> the set <span>\\(S_{*}\\)</span> is a finite union of straight line segments, and it minimizes the mass in the appropriate class of admissible chains, which is defined by a given boundary datum and <span>\\(\\Omega \\)</span>.\n</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-025-02086-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02086-z","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study the limiting behavior of minimizing p-harmonic maps from a bounded Lipschitz domain \(\Omega \subset \mathbb {R}^{3}\) to a compact connected Riemannian manifold without boundary and with finite fundamental group as \(p \nearrow 2\). We prove that there exists a closed set \(S_{*}\) of finite length such that minimizing p-harmonic maps converge to a locally minimizing harmonic map in \(\Omega \setminus S_{*}\). We prove that locally inside \(\Omega \) the singular set \(S_{*}\) is a finite union of straight line segments, and it minimizes the mass in the appropriate class of admissible chains. Furthermore, we establish local and global estimates for the limiting singular harmonic map. Under additional assumptions, we prove that globally in \(\overline{\Omega }\) the set \(S_{*}\) is a finite union of straight line segments, and it minimizes the mass in the appropriate class of admissible chains, which is defined by a given boundary datum and \(\Omega \).

有限基本群p→2时三维p调和映射最小化的极限行为
研究了从有界Lipschitz定义域\(\Omega \subset \mathbb {R}^{3}\)到无边界有限基群为\(p \nearrow 2\)的紧连通黎曼流形的最小化p调和映射的极限行为。我们证明了存在一个有限长度的闭集\(S_{*}\),使得极小p调和映射收敛于\(\Omega \setminus S_{*}\)中的局部极小调和映射。证明了在\(\Omega \)内的奇异集\(S_{*}\)是直线段的有限并,并且在适当的可容许链类中使质量极小。进一步,我们建立了极限奇异调和映射的局部估计和全局估计。在附加的假设条件下,我们证明了在\(\overline{\Omega }\)中,集合\(S_{*}\)是直线段的有限并,并且在由给定的边界基准和\(\Omega \)定义的适当的可容许链类中,质量最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信