Hang Zhao , Zitong Wang , Chenyang Li , Rui Zhu , Feiyang Yang
{"title":"DMCMFuse: A dual-phase model via multi-dimensional cross-scanning state space model for multi-modality medical image fusion","authors":"Hang Zhao , Zitong Wang , Chenyang Li , Rui Zhu , Feiyang Yang","doi":"10.1016/j.displa.2025.103056","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-modality medical image fusion is crucial for improving diagnostic accuracy by combining complementary information from different imaging modalities. However, a key challenge is effectively balancing the abundant modality-specific features (e.g., soft tissue details in MRI and bone structure in CT) with the relatively fewer modality-shared features, often leading to suboptimal fusion outcomes. To address this, we propose DMCMFuse, a dual-phase model for multi-modality medical image fusion that leverages a multi-dimensional cross-scanning state-space model. The model first decomposes multi-modality images into distinct frequency components to maintain spatial and channel coherence. In the fusion phase, we apply Mamba for the first time in medical image fusion and develop a fusion method that integrates spatial scanning, spatial interaction, and channel scanning. This multi-dimensional cross-scanning approach effectively combines features from each modality, ensuring the retention of both global and local information. Comprehensive experimental results demonstrate that DMCMFuse surpasses the state-of-the-art methods, generating fused images of superior quality with enhanced structure consistency and richer feature representation, making it highly effective for medical image analysis and diagnosis.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"89 ","pages":"Article 103056"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225000939","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-modality medical image fusion is crucial for improving diagnostic accuracy by combining complementary information from different imaging modalities. However, a key challenge is effectively balancing the abundant modality-specific features (e.g., soft tissue details in MRI and bone structure in CT) with the relatively fewer modality-shared features, often leading to suboptimal fusion outcomes. To address this, we propose DMCMFuse, a dual-phase model for multi-modality medical image fusion that leverages a multi-dimensional cross-scanning state-space model. The model first decomposes multi-modality images into distinct frequency components to maintain spatial and channel coherence. In the fusion phase, we apply Mamba for the first time in medical image fusion and develop a fusion method that integrates spatial scanning, spatial interaction, and channel scanning. This multi-dimensional cross-scanning approach effectively combines features from each modality, ensuring the retention of both global and local information. Comprehensive experimental results demonstrate that DMCMFuse surpasses the state-of-the-art methods, generating fused images of superior quality with enhanced structure consistency and richer feature representation, making it highly effective for medical image analysis and diagnosis.
期刊介绍:
Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface.
Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.