Pairing powers of pythagorean pairs

IF 0.5 4区 数学 Q3 MATHEMATICS
Lorenz Halbeisen , Norbert Hungerbühler , Arman Shamsi Zargar
{"title":"Pairing powers of pythagorean pairs","authors":"Lorenz Halbeisen ,&nbsp;Norbert Hungerbühler ,&nbsp;Arman Shamsi Zargar","doi":"10.1016/j.indag.2024.09.011","DOIUrl":null,"url":null,"abstract":"<div><div>A pair <span><math><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></math></span> of positive integers is a <em>pythagorean pair</em> if <span><math><mrow><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> is a square. A pythagorean pair <span><math><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></math></span> is called a <em>pythapotent pair of degree</em> <span><math><mi>h</mi></math></span> if there is another pythagorean pair <span><math><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>l</mi><mo>)</mo></mrow></math></span>, which is not a multiple of <span><math><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></math></span>, such that <span><math><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msup><mi>k</mi><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>h</mi></mrow></msup><mi>l</mi><mo>)</mo></mrow></math></span> is a pythagorean pair. To each pythagorean pair <span><math><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></math></span> we assign an elliptic curve <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msup><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>h</mi></mrow></msup></mrow></msub></math></span> for <span><math><mrow><mi>h</mi><mo>≥</mo><mn>3</mn></mrow></math></span> with torsion group isomorphic to <span><math><mrow><mi>Z</mi><mo>/</mo><mn>2</mn><mi>Z</mi><mo>×</mo><mi>Z</mi><mo>/</mo><mn>4</mn><mi>Z</mi></mrow></math></span> such that <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msup><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>h</mi></mrow></msup></mrow></msub></math></span> has positive rank over <span><math><mi>Q</mi></math></span> if and only if <span><math><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></math></span> is a pythapotent pair of degree <span><math><mi>h</mi></math></span>. As a side result, we get that if <span><math><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></math></span> is a pythapotent pair of degree <span><math><mi>h</mi></math></span>, then there exist infinitely many pythagorean pairs <span><math><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>l</mi><mo>)</mo></mrow></math></span>, not multiples of each other, such that <span><math><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msup><mi>k</mi><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>h</mi></mrow></msup><mi>l</mi><mo>)</mo></mrow></math></span> is a pythagorean pair. In particular, we show that any pythagorean pair is always a pythapotent pair of degree 3. In a previous work, pythapotent pairs of degrees 1 and 2 have been studied.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 3","pages":"Pages 903-911"},"PeriodicalIF":0.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724001162","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A pair (a,b) of positive integers is a pythagorean pair if a2+b2 is a square. A pythagorean pair (a,b) is called a pythapotent pair of degree h if there is another pythagorean pair (k,l), which is not a multiple of (a,b), such that (ahk,bhl) is a pythagorean pair. To each pythagorean pair (a,b) we assign an elliptic curve Γah,bh for h3 with torsion group isomorphic to Z/2Z×Z/4Z such that Γah,bh has positive rank over Q if and only if (a,b) is a pythapotent pair of degree h. As a side result, we get that if (a,b) is a pythapotent pair of degree h, then there exist infinitely many pythagorean pairs (k,l), not multiples of each other, such that (ahk,bhl) is a pythagorean pair. In particular, we show that any pythagorean pair is always a pythapotent pair of degree 3. In a previous work, pythapotent pairs of degrees 1 and 2 have been studied.
勾股定理对的配对幂
如果a2+b2是平方,一对正整数(A,b)就是一对勾股定理对。如果另一个毕达哥拉斯对(k,l)不是(A,b)的倍数,则一个毕达哥拉斯对(A,b)称为h次毕达哥拉斯对,使得(ahk,bhl)是一个毕达哥拉斯对。对于每个毕达哥拉斯对(a,b),我们分配一条椭圆曲线Γah,bh,当h≥3时,其扭转群同构于Z/2Z×Z/4Z,使得Γah,bh在Q上的秩为正,当且仅当(a,b)是h次的毕达哥拉斯对。作为一个副结果,我们得到,如果(a,b)是h次的毕达哥拉斯对,则存在无穷多个毕达哥拉斯对(k,l),它们彼此不是倍数,使得(ahk,bhl)是毕达哥拉斯对。特别地,我们证明了任何勾股定理对总是一个3次的勾股定理对。在先前的工作中,已经研究了1和2度的幂对数对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信